Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Based Simulators for the Phosphorus Removal Process Control in Wastewater Treatment via Deep Reinforcement Learning Algorithms (2401.12822v1)

Published 23 Jan 2024 in eess.SY, cs.AI, cs.LG, and cs.SY

Abstract: Phosphorus removal is vital in wastewater treatment to reduce reliance on limited resources. Deep reinforcement learning (DRL) is a machine learning technique that can optimize complex and nonlinear systems, including the processes in wastewater treatment plants, by learning control policies through trial and error. However, applying DRL to chemical and biological processes is challenging due to the need for accurate simulators. This study trained six models to identify the phosphorus removal process and used them to create a simulator for the DRL environment. Although the models achieved high accuracy (>97%), uncertainty and incorrect prediction behavior limited their performance as simulators over longer horizons. Compounding errors in the models' predictions were identified as one of the causes of this problem. This approach for improving process control involves creating simulation environments for DRL algorithms, using data from supervisory control and data acquisition (SCADA) systems with a sufficient historical horizon without complex system modeling or parameter estimation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. doi:10.3390/w13040517.
  2. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jctb.6842, doi:https://doi.org/10.1002/jctb.6842.
  3. doi:https://doi.org/10.1016/j.jclepro.2020.124430.
  4. doi:https://doi.org/10.1016/j.compchemeng.2022.107738.
  5. doi:10.3390/app7080813.
  6. doi:https://doi.org/10.1016/j.compchemeng.2013.03.007.
  7. doi:https://doi.org/10.1016/j.chemosphere.2021.132346.
  8. doi:10.2166/9781780402369.
  9. doi:https://doi.org/10.1016/j.chemosphere.2021.130498.
  10. doi:https://doi.org/10.1016/j.compchemeng.2020.106886.
  11. arXiv:https://doi.org/10.1021/acs.iecr.0c05678, doi:10.1021/acs.iecr.0c05678.
  12. doi:10.48550/ARXIV.1509.02971.
  13. doi:https://doi.org/10.1016/j.chemosphere.2019.06.103.
  14. doi:https://doi.org/10.1016/j.watres.2019.03.030.
  15. arXiv:https://iwaponline.com/wst/article-pdf/53/3/111/432421/111.pdf, doi:10.2166/wst.2006.082.
  16. doi:https://doi.org/10.1016/j.watres.2014.02.008.
  17. doi:https://doi.org/10.1016/j.scitotenv.2019.134279.
  18. arXiv:https://doi.org/10.1080/21622515.2021.1913242, doi:10.1080/21622515.2021.1913242.
  19. doi:https://doi.org/10.1016/j.psep.2019.11.014.
  20. doi:https://doi.org/10.1016/j.biortech.2019.121814.
  21. doi:https://doi.org/10.1016/0043-1354(96)00063-2.
  22. doi:https://doi.org/10.1016/j.engappai.2009.09.015.
  23. doi:https://doi.org/10.1016/B978-0-12-818634-3.50127-2.
  24. doi:https://doi.org/10.1016/B978-0-12-819764-6.00008-9.
  25. doi:https://doi.org/10.1016/j.asoc.2021.107227.
  26. doi:10.11949/j.issn.0438-1157.20151898.
  27. arXiv:1402.1128.
  28. doi:10.1109/TPAMI.2008.137.
  29. doi:https://doi.org/10.1016/j.neunet.2021.03.027.
  30. doi:https://doi.org/10.1016/j.ins.2020.03.022.
  31. doi:10.1109/ACCESS.2019.2950852.
  32. doi:https://doi.org/10.1016/j.jwpe.2020.101388. URL https://www.sciencedirect.com/science/article/pii/S221471442030266X
  33. doi:10.1109/ACCESS.2020.3030820.
  34. doi:10.3390/s20133743.
  35. doi:https://doi.org/10.1016/j.conbuildmat.2022.126584.
  36. doi:10.1109/ICTAI52525.2021.00110.
  37. arXiv:2012.07436.
  38. doi:https://doi.org/10.1016/j.watres.2022.118102.
  39. doi:10.1007/s00449-018-2022-0.
  40. T. pandas development team, pandas-dev/pandas: Pandas (Feb. 2020). doi:10.5281/zenodo.3509134.
  41. doi:10.23919/ACC.2017.7963782.
  42. doi:10.1109/WISA.2017.25.
  43. arXiv:2201.12740.
  44. arXiv:1907.10902.
  45. doi:10.1017/9781108380690.
  46. doi:10.3390/electronics11182935.
  47. doi:10.3390/s21165625.
  48. doi:10.48550/ARXIV.1912.11206.
  49. doi:10.48550/ARXIV.1905.13320.
  50. doi:10.48550/ARXIV.2203.09637.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets