Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extended imaginary gauge transformation in a general nonreciprocal lattice (2401.12785v2)

Published 23 Jan 2024 in quant-ph

Abstract: Imaginary gauge transformation (IGT) provides a clear understanding of the non-Hermitian skin effect by transforming the non-Hermitian Hamiltonians with real spectra into Hermitian ones. In this paper, we extend this approach to the complex spectrum regime in a general nonreciprocal lattice model. We unveil the validity of IGT hinges on a class of pseudo-Hermitian symmetry. The generalized Brillouin zone of Hamiltonians respect such pseudo-Hermiticity is demonstrated to be a circle, which enables easy access to the continuum bands, localization length of skin modes, and relevant topological numbers. Furthermore, we investigate the applicability of IGT and the underlying pseudo-Hermiticity beyond nearest-neighbor hopping, offering a graphical interpretation. Our theoretical framework is applied to establish bulk-boundary correspondence in the nonreciprocal trimer Su-Schrieffer-Heeger model and to analyze the localization behaviors of skin modes in the two-dimensional Hatano-Nelson model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. C. M. Bender, Making sense of non-hermitian hamiltonians, Reports on Progress in Physics 70, 947 (2007).
  2. V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric systems, Rev. Mod. Phys. 88, 035002 (2016).
  3. Y. Ashida and M. Ueda, Full-counting many-particle dynamics: Nonlocal and chiral propagation of correlations, Phys. Rev. Lett. 120, 185301 (2018).
  4. Y. Ashida, Z. Gong, and M. Ueda, Non-hermitian physics, Advances in Physics 69, 249 (2020).
  5. S. Gopalakrishnan and M. J. Gullans, Entanglement and purification transitions in non-hermitian quantum mechanics, Phys. Rev. Lett. 126, 170503 (2021).
  6. L. Feng, R. El-Ganainy, and L. Ge, Non-hermitian photonics based on parity–time symmetry, Nature Photonics 11, 752 (2017).
  7. S. Longhi, Parity-time symmetry meets photonics: A new twist in non-hermitian optics, Europhysics Letters 120, 64001 (2018).
  8. I. Rotter, A non-hermitian hamilton operator and the physics of open quantum systems, Journal of Physics A: Mathematical and Theoretical 42, 153001 (2009).
  9. T. Yoshida, R. Peters, and N. Kawakami, Non-hermitian perspective of the band structure in heavy-fermion systems, Phys. Rev. B 98, 035141 (2018).
  10. H. Shen and L. Fu, Quantum oscillation from in-gap states and a non-hermitian landau level problem, Phys. Rev. Lett. 121, 026403 (2018).
  11. S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).
  12. V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, Non-hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97, 121401(R) (2018).
  13. F. Song, S. Yao, and Z. Wang, Non-hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett. 123, 170401 (2019a).
  14. C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Topological framework for directional amplification in driven-dissipative cavity arrays, Nature communications 11, 3149 (2020).
  15. K. Yokomizo and S. Murakami, Scaling rule for the critical non-hermitian skin effect, Phys. Rev. B 104, 165117 (2021).
  16. X.-Q. Sun, P. Zhu, and T. L. Hughes, Geometric response and disclination-induced skin effects in non-hermitian systems, Phys. Rev. Lett. 127, 066401 (2021).
  17. K. Zhang, Z. Yang, and C. Fang, Universal non-hermitian skin effect in two and higher dimensions, Nature communications 13, 1 (2022).
  18. W. Zhu and J. Gong, Hybrid skin-topological modes without asymmetric couplings, Phys. Rev. B 106, 035425 (2022).
  19. C. Wu, A. Fan, and S.-D. Liang, Complex berry curvature and complex energy band structures in non-hermitian graphene model, AAPPS Bulletin 32, 39 (2022a).
  20. P. Gao, M. Willatzen, and J. Christensen, Anomalous topological edge states in non-hermitian piezophononic media, Phys. Rev. Lett. 125, 206402 (2020).
  21. X. Wang, W. Wang, and G. Ma, Extended topological mode in a one-dimensional non-hermitian acoustic crystal, AAPPS Bulletin 33, 23 (2023).
  22. T. E. Lee, Anomalous edge state in a non-hermitian lattice, Phys. Rev. Lett. 116, 133903 (2016).
  23. Y. Xiong, Why does bulk boundary correspondence fail in some non-hermitian topological models, Journal of Physics Communications 2, 035043 (2018).
  24. H. Shen, B. Zhen, and L. Fu, Topological band theory for non-hermitian hamiltonians, Phys. Rev. Lett. 120, 146402 (2018).
  25. F. Song, S. Yao, and Z. Wang, Non-hermitian topological invariants in real space, Phys. Rev. Lett. 123, 246801 (2019b).
  26. S. Yao, F. Song, and Z. Wang, Non-hermitian chern bands, Phys. Rev. Lett. 121, 136802 (2018).
  27. K. Yokomizo and S. Murakami, Non-bloch band theory of non-hermitian systems, Phys. Rev. Lett. 123, 066404 (2019).
  28. L. Herviou, J. H. Bardarson, and N. Regnault, Defining a bulk-edge correspondence for non-hermitian hamiltonians via singular-value decomposition, Phys. Rev. A 99, 052118 (2019).
  29. K.-I. Imura and Y. Takane, Generalized bulk-edge correspondence for non-hermitian topological systems, Phys. Rev. B 100, 165430 (2019).
  30. H.-G. Zirnstein, G. Refael, and B. Rosenow, Bulk-boundary correspondence for non-hermitian hamiltonians via green functions, Phys. Rev. Lett. 126, 216407 (2021).
  31. S. Longhi, Non-bloch 𝒫⁢𝒯𝒫𝒯\cal{PT}caligraphic_P caligraphic_T symmetry breaking in non-hermitian photonic quantum walks, Opt. Lett. 44, 5804 (2019).
  32. C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-hermitian systems, Phys. Rev. B 99, 201103(R) (2019).
  33. K. Kawabata, N. Okuma, and M. Sato, Non-bloch band theory of non-hermitian hamiltonians in the symplectic class, Phys. Rev. B 101, 195147 (2020).
  34. S. Longhi, Non-bloch-band collapse and chiral zener tunneling, Phys. Rev. Lett. 124, 066602 (2020).
  35. Y. Fu and S. Wan, Degeneracy and defectiveness in non-hermitian systems with open boundary, Phys. Rev. B 105, 075420 (2022).
  36. K. Zhang, Z. Yang, and C. Fang, Correspondence between winding numbers and skin modes in non-hermitian systems, Phys. Rev. Lett. 125, 126402 (2020).
  37. D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-hermitian boundary modes and topology, Phys. Rev. Lett. 124, 056802 (2020).
  38. N. Okuma and M. Sato, Non-hermitian topological phenomena: A review, Annual Review of Condensed Matter Physics 14, 83 (2023).
  39. H. Hu and E. Zhao, Knots and non-hermitian bloch bands, Phys. Rev. Lett. 126, 010401 (2021).
  40. A. Mostafazadeh, Pseudo-hermiticity versus pt symmetry: the necessary condition for the reality of the spectrum of a non-hermitian hamiltonian, Journal of Mathematical Physics 43, 205 (2002).
  41. N. Hatano and D. R. Nelson, Localization transitions in non-hermitian quantum mechanics, Phys. Rev. Lett. 77, 570 (1996).
  42. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).
  43. Q.-B. Zeng and R. Lü, Real spectra and phase transition of skin effect in nonreciprocal systems, Phys. Rev. B 105, 245407 (2022).
  44. J. H. D. Rivero, L. Feng, and L. Ge, Imaginary gauge transformation in momentum space and dirac exceptional point, Phys. Rev. Lett. 129, 243901 (2022).
  45. C. M. Bender, M. Berry, and A. Mandilara, Generalized pt symmetry and real spectra, Journal of Physics A: Mathematical and General 35, L467 (2002).
  46. K. Yokomizo and S. Murakami, Non-bloch bands in two-dimensional non-hermitian systems, Phys. Rev. B 107, 195112 (2023).
  47. L. Gui-Lu, General quantum interference principle and duality computer, Communications in Theoretical Physics 45, 825 (2006).
  48. G. Long and Y. Liu, Duality quantum computing, Frontiers of Computer Science in China 2, 167 (2008).
  49. L. Gui-Lu, L. Yang, and W. Chuan, Allowable generalized quantum gates, Communications in Theoretical Physics 51, 65 (2009).
  50. J. Cui, T. Zhou, and G. L. Long, Density matrix formalism of duality quantum computer and the solution of zero-wave-function paradox, Quantum Information Processing 11, 317 (2012).
  51. S.-J. Wei and G.-L. Long, Duality quantum computer and the efficient quantum simulations, Quantum Information Processing 15, 1189 (2016).
  52. C. Shao, Y. Li, and H. Li, Quantum algorithm design: Techniques and applications, Journal of Systems Science and Complexity 32, 375 (2019).
  53. C. Zheng, Universal quantum simulation of single-qubit nonunitary operators using duality quantum algorithm, Scientific Reports 11, 3960 (2021).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com