Extended imaginary gauge transformation in a general nonreciprocal lattice (2401.12785v2)
Abstract: Imaginary gauge transformation (IGT) provides a clear understanding of the non-Hermitian skin effect by transforming the non-Hermitian Hamiltonians with real spectra into Hermitian ones. In this paper, we extend this approach to the complex spectrum regime in a general nonreciprocal lattice model. We unveil the validity of IGT hinges on a class of pseudo-Hermitian symmetry. The generalized Brillouin zone of Hamiltonians respect such pseudo-Hermiticity is demonstrated to be a circle, which enables easy access to the continuum bands, localization length of skin modes, and relevant topological numbers. Furthermore, we investigate the applicability of IGT and the underlying pseudo-Hermiticity beyond nearest-neighbor hopping, offering a graphical interpretation. Our theoretical framework is applied to establish bulk-boundary correspondence in the nonreciprocal trimer Su-Schrieffer-Heeger model and to analyze the localization behaviors of skin modes in the two-dimensional Hatano-Nelson model.
- C. M. Bender, Making sense of non-hermitian hamiltonians, Reports on Progress in Physics 70, 947 (2007).
- V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric systems, Rev. Mod. Phys. 88, 035002 (2016).
- Y. Ashida and M. Ueda, Full-counting many-particle dynamics: Nonlocal and chiral propagation of correlations, Phys. Rev. Lett. 120, 185301 (2018).
- Y. Ashida, Z. Gong, and M. Ueda, Non-hermitian physics, Advances in Physics 69, 249 (2020).
- S. Gopalakrishnan and M. J. Gullans, Entanglement and purification transitions in non-hermitian quantum mechanics, Phys. Rev. Lett. 126, 170503 (2021).
- L. Feng, R. El-Ganainy, and L. Ge, Non-hermitian photonics based on parity–time symmetry, Nature Photonics 11, 752 (2017).
- S. Longhi, Parity-time symmetry meets photonics: A new twist in non-hermitian optics, Europhysics Letters 120, 64001 (2018).
- I. Rotter, A non-hermitian hamilton operator and the physics of open quantum systems, Journal of Physics A: Mathematical and Theoretical 42, 153001 (2009).
- T. Yoshida, R. Peters, and N. Kawakami, Non-hermitian perspective of the band structure in heavy-fermion systems, Phys. Rev. B 98, 035141 (2018).
- H. Shen and L. Fu, Quantum oscillation from in-gap states and a non-hermitian landau level problem, Phys. Rev. Lett. 121, 026403 (2018).
- S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).
- V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, Non-hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97, 121401(R) (2018).
- F. Song, S. Yao, and Z. Wang, Non-hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett. 123, 170401 (2019a).
- C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Topological framework for directional amplification in driven-dissipative cavity arrays, Nature communications 11, 3149 (2020).
- K. Yokomizo and S. Murakami, Scaling rule for the critical non-hermitian skin effect, Phys. Rev. B 104, 165117 (2021).
- X.-Q. Sun, P. Zhu, and T. L. Hughes, Geometric response and disclination-induced skin effects in non-hermitian systems, Phys. Rev. Lett. 127, 066401 (2021).
- K. Zhang, Z. Yang, and C. Fang, Universal non-hermitian skin effect in two and higher dimensions, Nature communications 13, 1 (2022).
- W. Zhu and J. Gong, Hybrid skin-topological modes without asymmetric couplings, Phys. Rev. B 106, 035425 (2022).
- C. Wu, A. Fan, and S.-D. Liang, Complex berry curvature and complex energy band structures in non-hermitian graphene model, AAPPS Bulletin 32, 39 (2022a).
- P. Gao, M. Willatzen, and J. Christensen, Anomalous topological edge states in non-hermitian piezophononic media, Phys. Rev. Lett. 125, 206402 (2020).
- X. Wang, W. Wang, and G. Ma, Extended topological mode in a one-dimensional non-hermitian acoustic crystal, AAPPS Bulletin 33, 23 (2023).
- T. E. Lee, Anomalous edge state in a non-hermitian lattice, Phys. Rev. Lett. 116, 133903 (2016).
- Y. Xiong, Why does bulk boundary correspondence fail in some non-hermitian topological models, Journal of Physics Communications 2, 035043 (2018).
- H. Shen, B. Zhen, and L. Fu, Topological band theory for non-hermitian hamiltonians, Phys. Rev. Lett. 120, 146402 (2018).
- F. Song, S. Yao, and Z. Wang, Non-hermitian topological invariants in real space, Phys. Rev. Lett. 123, 246801 (2019b).
- S. Yao, F. Song, and Z. Wang, Non-hermitian chern bands, Phys. Rev. Lett. 121, 136802 (2018).
- K. Yokomizo and S. Murakami, Non-bloch band theory of non-hermitian systems, Phys. Rev. Lett. 123, 066404 (2019).
- L. Herviou, J. H. Bardarson, and N. Regnault, Defining a bulk-edge correspondence for non-hermitian hamiltonians via singular-value decomposition, Phys. Rev. A 99, 052118 (2019).
- K.-I. Imura and Y. Takane, Generalized bulk-edge correspondence for non-hermitian topological systems, Phys. Rev. B 100, 165430 (2019).
- H.-G. Zirnstein, G. Refael, and B. Rosenow, Bulk-boundary correspondence for non-hermitian hamiltonians via green functions, Phys. Rev. Lett. 126, 216407 (2021).
- S. Longhi, Non-bloch 𝒫𝒯𝒫𝒯\cal{PT}caligraphic_P caligraphic_T symmetry breaking in non-hermitian photonic quantum walks, Opt. Lett. 44, 5804 (2019).
- C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-hermitian systems, Phys. Rev. B 99, 201103(R) (2019).
- K. Kawabata, N. Okuma, and M. Sato, Non-bloch band theory of non-hermitian hamiltonians in the symplectic class, Phys. Rev. B 101, 195147 (2020).
- S. Longhi, Non-bloch-band collapse and chiral zener tunneling, Phys. Rev. Lett. 124, 066602 (2020).
- Y. Fu and S. Wan, Degeneracy and defectiveness in non-hermitian systems with open boundary, Phys. Rev. B 105, 075420 (2022).
- K. Zhang, Z. Yang, and C. Fang, Correspondence between winding numbers and skin modes in non-hermitian systems, Phys. Rev. Lett. 125, 126402 (2020).
- D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-hermitian boundary modes and topology, Phys. Rev. Lett. 124, 056802 (2020).
- N. Okuma and M. Sato, Non-hermitian topological phenomena: A review, Annual Review of Condensed Matter Physics 14, 83 (2023).
- H. Hu and E. Zhao, Knots and non-hermitian bloch bands, Phys. Rev. Lett. 126, 010401 (2021).
- A. Mostafazadeh, Pseudo-hermiticity versus pt symmetry: the necessary condition for the reality of the spectrum of a non-hermitian hamiltonian, Journal of Mathematical Physics 43, 205 (2002).
- N. Hatano and D. R. Nelson, Localization transitions in non-hermitian quantum mechanics, Phys. Rev. Lett. 77, 570 (1996).
- W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).
- Q.-B. Zeng and R. Lü, Real spectra and phase transition of skin effect in nonreciprocal systems, Phys. Rev. B 105, 245407 (2022).
- J. H. D. Rivero, L. Feng, and L. Ge, Imaginary gauge transformation in momentum space and dirac exceptional point, Phys. Rev. Lett. 129, 243901 (2022).
- C. M. Bender, M. Berry, and A. Mandilara, Generalized pt symmetry and real spectra, Journal of Physics A: Mathematical and General 35, L467 (2002).
- K. Yokomizo and S. Murakami, Non-bloch bands in two-dimensional non-hermitian systems, Phys. Rev. B 107, 195112 (2023).
- L. Gui-Lu, General quantum interference principle and duality computer, Communications in Theoretical Physics 45, 825 (2006).
- G. Long and Y. Liu, Duality quantum computing, Frontiers of Computer Science in China 2, 167 (2008).
- L. Gui-Lu, L. Yang, and W. Chuan, Allowable generalized quantum gates, Communications in Theoretical Physics 51, 65 (2009).
- J. Cui, T. Zhou, and G. L. Long, Density matrix formalism of duality quantum computer and the solution of zero-wave-function paradox, Quantum Information Processing 11, 317 (2012).
- S.-J. Wei and G.-L. Long, Duality quantum computer and the efficient quantum simulations, Quantum Information Processing 15, 1189 (2016).
- C. Shao, Y. Li, and H. Li, Quantum algorithm design: Techniques and applications, Journal of Systems Science and Complexity 32, 375 (2019).
- C. Zheng, Universal quantum simulation of single-qubit nonunitary operators using duality quantum algorithm, Scientific Reports 11, 3960 (2021).