Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Microresonator-referenced soliton microcombs with zeptosecond-level timing noise (2401.12760v1)

Published 23 Jan 2024 in physics.optics and physics.app-ph

Abstract: Optical frequency division relies on optical frequency combs to coherently translate ultra-stable optical frequency references to the microwave domain. This technology has enabled microwave synthesis with ultralow timing noise, but the required instruments are too bulky for real-world applications. Here, we develop a compact optical frequency division system using microresonator-based frequency references and comb generators. The soliton microcomb formed in an integrated Si$_3$N$_4$ microresonator is stabilized to two lasers referenced to an ultrahigh-$Q$ MgF$_2$ microresonator. Photodetection of the soliton pulse train produces 25 GHz microwaves with absolute phase noise of -141 dBc/Hz (547 zs Hz${-1/2}$) at 10 kHz offset frequency. The synthesized microwaves are tested as local oscillators in jammed communication channels, resulting in improved fidelity compared with those derived from electronic oscillators. Our work demonstrates unprecedented coherence in miniature microwave oscillators, providing key building blocks for next-generation timekeeping, navigation, and satellite communication systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).
  2. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
  3. Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).
  4. Optical frequency division. Natl. Sci. Rev. 7, 1801–1802 (2020).
  5. Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 10−18superscript1018\mathrm{10^{-18}}10 start_POSTSUPERSCRIPT - 18 end_POSTSUPERSCRIPT instability. Science 368, 889–892 (2020).
  6. Whispering-gallery-mode resonators as frequency references. i. fundamental limitations. J Opt Soc Am B 24, 1324–1335 (2007).
  7. Alnis, J. et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys. Rev. A 84, 011804 (2011).
  8. Liu, K. et al. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica 9, 770–775 (2022).
  9. Dissipative Kerr solitons in optical microresonators. Science 361 (2018).
  10. Betz, J. W. Engineering satellite-based navigation and timing: global navigation satellite systems, signals, and receivers (John Wiley & Sons, 2015).
  11. Kodheli, O. et al. Satellite communications in the new space era: A survey and future challenges. IEEE Communications Surveys & Tutorials 23, 70–109 (2020).
  12. Hecht, J. et al. The bandwidth bottleneck. Nature 536, 139–142 (2016).
  13. The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geod 81, 379–387 (2007).
  14. Doviak, R. J. et al. Doppler radar and weather observations (Courier Corporation, 2006).
  15. Ocean wind and wave measurements using X-band marine radar: A comprehensive review. Remote Sens. 9, 1261 (2017).
  16. Ayhan, S. et al. Impact of frequency ramp nonlinearity, phase noise, and SNR on FMCW radar accuracy. IEEE Trans Microw Theory Tech 64, 3290–3301 (2016).
  17. Maleki, L. The optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).
  18. Tang, J. et al. Integrated optoelectronic oscillator. Opt. Express 26, 12257–12265 (2018).
  19. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 1–7 (2013).
  20. Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).
  21. Kittlaus, E. A. et al. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar. Nat. Commun. 12, 4397 (2021).
  22. Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
  23. Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands. Optica 10, 33–34 (2023).
  24. Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).
  25. Diddams, S. et al. An optical clock based on a single trapped Hg+199superscriptsuperscriptHg199\mathrm{{}^{199}Hg^{+}}start_FLOATSUPERSCRIPT 199 end_FLOATSUPERSCRIPT roman_Hg start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ion. Science 293, 825–828 (2001).
  26. Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photon. 6, 687–692 (2012).
  27. Kudelin, I. et al. Photonic chip-based low noise microwave oscillator. arXiv preprint arXiv:2307.08937 (2023).
  28. Sun, S. et al. Integrated optical frequency division for stable microwave and mmwave generation. arXiv preprint arXiv:2305.13575 (2023).
  29. Jin, W. et al. Hertz-linewidth semiconductor lasers using cmos-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).
  30. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).
  31. Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 μ𝜇\muitalic_μm based on crystalline microresonators. Nat. Commun. 4, 1345 (2013).
  32. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).
  33. Yao, L. et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica 9, 561–564 (2022).
  34. Puckett, M. W. et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun. 12, 934 (2021).
  35. Qu, Z. et al. Fabrication of an ultra-high quality MgF22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT micro-resonator for a single soliton comb generation. Opt. Express 31, 3005–3016 (2023).
  36. Ye, Z. et al. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photonics Res. 11, 558–568 (2023).
  37. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Opt. Lett. 41, 3419–3422 (2016).
  38. Jeong, D. et al. Ultralow jitter silica microcomb. Optica 7, 1108–1111 (2020).
  39. Lao, C. et al. Quantum decoherence of dark pulses in optical microresonators. Nat. Commun. 14, 1802 (2023).
  40. Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).
  41. Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11, 665–667 (1986).
  42. Carr, J. J. In The Technician’s EMI Handbook, 163–195 (Newnes, Woburn, 2000).
  43. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).
  44. Zhao, Y. et al. All-optical frequency division on-chip using a single laser. arXiv preprint arXiv:2303.02805 (2023).
  45. Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 1–8 (2020).
  46. Anderson, M. H. et al. Zero dispersion kerr solitons in optical microresonators. Nat. Commun. 13, 4764 (2022).
  47. Helgason, Ó. B. et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nat. Photon. 1–8 (2023).
  48. Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
  49. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
  50. Shao, L. et al. Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate. Opt. Express 28, 23728–23738 (2020).
  51. Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).
  52. Battery-operated integrated frequency comb generator. Nature 562, 401 (2018).
  53. Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019).
  54. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).
  55. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).
  56. Liu, Y. et al. A photonic integrated circuit–based erbium-doped amplifier. Science 376, 1309–1313 (2022).
  57. Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photon. 16, 679–685 (2022).
  58. Liu, G. et al. Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators. Optica 5, 219–226 (2018).
  59. Anderson, M. et al. Highly efficient coupling of crystalline microresonators to integrated photonic waveguides. Opt. Lett. 43, 2106–2109 (2018).
  60. Liang, W. et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 6, 1–6 (2015).
  61. Akiyama, K. et al. First sagittarius a* event horizon telescope results. i. the shadow of the supermassive black hole in the center of the milky way. Astrophys. J. Lett. 930, L12 (2022).
  62. Superconducting quantum bits. Nature 453, 1031–1042 (2008).
  63. Gong, M. et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372, 948–952 (2021).
  64. Thermorefractive noise in whispering gallery mode microresonators: Analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).
  65. Yang, Q.-F. et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun. 12, 1442 (2021).
Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com