Space-time unfitted finite elements on moving explicit geometry representations (2401.12649v2)
Abstract: This work proposes a novel variational approximation of partial differential equations on moving geometries determined by explicit boundary representations. The benefits of the proposed formulation are the ability to handle large displacements of explicitly represented domain boundaries without generating body-fitted meshes and remeshing techniques. For the space discretization, we use a background mesh and an unfitted method that relies on integration on cut cells only. We perform this intersection by using clipping algorithms. To deal with the mesh movement, we pullback the equations to a reference configuration (the spatial mesh at the initial time slab times the time interval) that is constant in time. This way, the geometrical intersection algorithm is only required in 3D, another key property of the proposed scheme. At the end of the time slab, we compute the deformed mesh, intersect the deformed boundary with the background mesh, and consider an exact transfer operator between meshes to compute jump terms in the time discontinuous Galerkin integration. The transfer is also computed using geometrical intersection algorithms. We demonstrate the applicability of the method to fluid problems around rotating (2D and 3D) geometries described by oriented boundary meshes. We also provide a set of numerical experiments that show the optimal convergence of the method.
- ParMETIS: Parallel graph partitioning and sparse matrix ordering library. Technical report, Department of Computer Science and Engineering, University of Minnesota, 1997.
- p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3):1103–1133, Jan. 2011. doi:10.1137/100791634.
- C. Burstedde and J. Holke. A tetrahedral space-filling curve for nonconforming adaptive meshes. SIAM Journal on Scientific Computing, 38(5):C471–C503, Jan. 2016. doi:10.1137/15m1040049.
- E. Burman and M. A. Fernández. An unfitted nitsche method for incompressible fluid–structure interaction using overlapping meshes. Computer Methods in Applied Mechanics and Engineering, 279:497–514, sep 2014. doi:10.1016/j.cma.2014.07.007.
- An XFEM/DG approach for fluid-structure interaction problems with contact. Applications of Mathematics, 66(2):183–211, jan 2021. doi:10.21136/am.2021.0310-19.
- Monolithic cut finite element–based approaches for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 119(8):757–796, apr 2019. doi:10.1002/nme.6072.
- A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloading. International Journal for Numerical Methods in Engineering, 118(10):561–577, feb 2019. doi:10.1002/nme.6026.
- Unfitted FEM for modelling the interaction of multiple fractures in a poroelastic medium. In Lecture Notes in Computational Science and Engineering, pages 331–352. Springer International Publishing, 2017. doi:10.1007/978-3-319-71431-8_11.
- Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for laser powder bed fusion processes. Additive Manufacturing, 36:101498, dec 2020. doi:10.1016/j.addma.2020.101498.
- Numerical modelling of heat transfer and experimental validation in powder-bed fusion with the virtual domain approximation. Finite Elements in Analysis and Design, 168:103343, jan 2020. doi:10.1016/j.finel.2019.103343.
- Embedded multilevel Monte Carlo for uncertainty quantification in random domains. International Journal for Uncertainty Quantification, 11(1):119–142, 2021. doi:10.1615/int.j.uncertaintyquantification.2021032984.
- Geometrical discretisations for unfitted finite elements on explicit boundary representations. Journal of Computational Physics, 460:111162, jul 2022. doi:10.1016/j.jcp.2022.111162.
- P. A. Martorell and S. Badia. High order unfitted finite element discretizations for explicit boundary representations. arXiv, 2023. doi:10.48550/arXiv.2311.14363.
- Condition number analysis and preconditioning of the finite cell method. Computer Methods in Applied Mechanics and Engineering, 316:297–327, apr 2017. doi:10.1016/j.cma.2016.07.006.
- E. Burman. Ghost penalty. Comptes Rendus Mathematique, 348(21-22):1217–1220, nov 2010. doi:10.1016/j.crma.2010.10.006.
- CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7):472–501, dec 2014. doi:10.1002/nme.4823.
- A high-order discontinuous galerkin method for compressible flows with immersed boundaries. International Journal for Numerical Methods in Engineering, 110(1):3–30, nov 2016. doi:10.1002/nme.5343.
- The aggregated unfitted finite element method for elliptic problems. Computer Methods in Applied Mechanics and Engineering, 336:533–553, jul 2018a. doi:10.1016/j.cma.2018.03.022.
- Mixed aggregated finite element methods for the unfitted discretization of the stokes problem. SIAM Journal on Scientific Computing, 40(6):B1541–B1576, jan 2018b. doi:10.1137/18m1185624.
- Distributed-memory parallelization of the aggregated unfitted finite element method. Computer Methods in Applied Mechanics and Engineering, 357:112583, dec 2019. doi:10.1016/j.cma.2019.112583.
- The aggregated unfitted finite element method on parallel tree-based adaptive meshes. SIAM Journal on Scientific Computing, 43(3):C203–C234, jan 2021. doi:10.1137/20m1344512.
- E. Neiva and S. Badia. Robust and scalable h-adaptive aggregated unfitted finite elements for interface elliptic problems. Computer Methods in Applied Mechanics and Engineering, 380:113769, jul 2021. doi:10.1016/j.cma.2021.113769.
- Robust high-order unfitted finite elements by interpolation-based discrete extension. Computers & Mathematics with Applications, 127:105–126, dec 2022a. doi:10.1016/j.camwa.2022.09.027.
- Linking ghost penalty and aggregated unfitted methods. Computer Methods in Applied Mechanics and Engineering, 388:114232, jan 2022b. doi:10.1016/j.cma.2021.114232.
- SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Computer Methods in Applied Mechanics and Engineering, 104(3):397–422, may 1993. doi:10.1016/0045-7825(93)90033-t.
- Space–time finite element techniques for computation of fluid–structure interactions. Computer Methods in Applied Mechanics and Engineering, 195(17-18):2002–2027, mar 2006. doi:10.1016/j.cma.2004.09.014.
- A space-time finite element method for structural acoustics in infinite domains part 1: Formulation, stability and convergence. Computer Methods in Applied Mechanics and Engineering, 132(3-4):195–227, jun 1996. doi:10.1016/0045-7825(95)00955-8.
- An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33(1-3):689–723, sep 1982. doi:10.1016/0045-7825(82)90128-1.
- F. Nobile and L. Formaggia. A stability analysis for the arbitrary lagrangian eulerian formulation with finite elements. East-West Journal of Numerical Mathematics, 7(2):105–132, 1999.
- Space-time unfitted finite element methods for time-dependent problems on moving domains. Computers & Mathematics with Applications, 135:60–76, apr 2023. doi:10.1016/j.camwa.2023.01.032.
- Geometrically higher order unfitted space-time methods for pdes on moving domains. SIAM Journal on Scientific Computing, 45(2):B139–B165, Mar. 2023. doi:10.1137/22m1476034.
- C. Lehrenfeld and M. Olshanskii. An eulerian finite element method for pdes in time-dependent domains. ESAIM: Mathematical Modelling and Numerical Analysis, 53(2):585–614, Mar. 2019. doi:10.1051/m2an/2018068.
- Stability and conditioning of immersed finite element methods: Analysis and remedies. Archives of Computational Methods in Engineering, 30(6):3617–3656, May 2023. doi:10.1007/s11831-023-09913-0.
- J. Nitsche. Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36(1):9–15, July 1971. doi:10.1007/bf02995904.
- F. Heimann and C. Lehrenfeld. Geometrically higher order unfitted space-time methods for pdes on moving domains: Geometry error analysis. arXiv, 2023. doi:10.48550/arXiv.2311.02348.
- J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge university press, 1997.
- K. Sugihara. A robust and consistent algorithm for intersecting convex polyhedra. Computer Graphics Forum, 13(3):45–54, aug 1994. doi:10.1111/1467-8659.1330045.
- Julia: A fresh approach to numerical computing. SIAM Review, 59(1):65–98, jan 2017. doi:10.1137/141000671.
- F. Verdugo and S. Badia. The software design of gridap: A finite element package based on the julia JIT compiler. Computer Physics Communications, 276:108341, jul 2022. doi:10.1016/j.cpc.2022.108341.
- GridapEmbedded. Version 0.8., Jan. 2023. Available at https://github.com/gridap/GridapEmbedded.jl.
- STLCutters. Zenodo, Sept. 2021. doi:10.5281/zenodo.5444427.
- I. Smears. Robust and efficient preconditioners for the discontinuous galerkin time-stepping method. IMA Journal of Numerical Analysis, page drw050, oct 2016. doi:10.1093/imanum/drw050.
- Q. Zhou and A. Jacobson. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv, 2016. doi:10.48550/arXiv.1605.04797.
- GridapDistributed: a massively parallel finite element toolbox in julia. Journal of Open Source Software, 7(74):4157, jun 2022. doi:10.21105/joss.04157.