Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Matching with Memoization for Regexes with Look-around and Atomic Grouping (Extended Version) (2401.12639v2)

Published 23 Jan 2024 in cs.PL

Abstract: Regular expression (regex) matching is fundamental in many applications, especially in web services. However, matching by backtracking -- preferred by most real-world implementations for its practical performance and backward compatibility -- can suffer from so-called catastrophic backtracking, which makes the number of backtracking super-linear and leads to the well-known ReDoS vulnerability. Inspired by a recent algorithm by Davis et al. that runs in linear time for (non-extended) regexes, we study efficient backtracking matching for regexes with two common extensions, namely look-around and atomic grouping. We present linear-time backtracking matching algorithms for these extended regexes. Their efficiency relies on memoization, much like the one by Davis et al.; we also strive for smaller memoization tables by carefully trimming their range. Our experiments -- we used some real-world regexes with the aforementioned extensions -- confirm the performance advantage of our algorithms.

Summary

We haven't generated a summary for this paper yet.