Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Distillation from Language-Oriented to Emergent Communication for Multi-Agent Remote Control (2401.12624v2)

Published 23 Jan 2024 in cs.AI, cs.IT, cs.LG, cs.NI, and math.IT

Abstract: In this work, we compare emergent communication (EC) built upon multi-agent deep reinforcement learning (MADRL) and language-oriented semantic communication (LSC) empowered by a pre-trained LLM using human language. In a multi-agent remote navigation task, with multimodal input data comprising location and channel maps, it is shown that EC incurs high training cost and struggles when using multimodal data, whereas LSC yields high inference computing cost due to the LLM's large size. To address their respective bottlenecks, we propose a novel framework of language-guided EC (LEC) by guiding the EC training using LSC via knowledge distillation (KD). Simulations corroborate that LEC achieves faster travel time while avoiding areas with poor channel conditions, as well as speeding up the MADRL training convergence by up to 61.8% compared to EC.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C. B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE Journal on Selected Areas in Communications, vol. 41, pp. 5 – 41, 2023.
  2. E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, pp. 567 – 579, 2019.
  3. J. N. Foerster, Y. M. Assael, N. D. Freitas, and S. Whiteson, “Learning to communicate with deep multi-agent reinforcement learning,” Neural Information Processing Systems, p. 2137–2145, 2016.
  4. S. Seo, J. Park, S.-W. Ko, J. Choi, M. Bennis, and S.-L. Kim, “Towards semantic communication protocols: A probabilistic logic perspective,” IEEE Journal on Selected Areas in Communications, 2023.
  5. H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv:2307.09288, 2023.
  6. J. Li, D. Li, C. Xiong, and S. Hoi, “BLIP: Bootstrapping language-image pre-training for unified vision-language understanding and generation,” International Conference on Machine Learning, p. 12888–12900, 2022.
  7. H. Nam, J. Park, J. Choi, M. Bennis, and S. L. Kim, “Language-oriented communication with semantic coding and knowledge distillation for text-to-image generation,” arXiv:2309.11127, 2023.
  8. J. Huang and K. C. C. Chang, “Towards reasoning in large language models: A survey,” arXiv:2212.10403, 2022.
  9. H. Sha et al., “LanguageMPC: Large language models as decision makers for autonomous driving,” arXiv:2310.03026, 2023.
  10. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” Proc. of NIPS Deep Learning Wksp., (Montre‘al, Canada), 2014.
  11. H. Jiang, “A latent space theory for emergent abilities in large language models,” arXiv:2304.09960, 2023.
  12. N. Wang, J. Xie, H. Luo, Q. Cheng, J. Wu, M. Jia, and L. Li, “Efficient image captioning for edge devices,” arXiv:2212.08985, 2022.
  13. X. Ye. (2023) calflops: a flops and params calculate tool for neural networks in pytorch framework. [Online]. Available: https://github.com/MrYxJ/calculate-flops.pytorch
  14. H. Choi, J. Oh, J. Chung, G. C. Alexandropoulos, and J. Choi, “WiThRay: A versatile ray-tracing simulator for smart wireless environments,” IEEE Access, vol. 11, pp. 56 822–56 845, 2023.
  15. E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “GPTQ: Accurate post-training quantization for generative pre-trained transformers,” arXiv:2210.17323, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com