Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning the cost-to-go for mixed-integer nonlinear model predictive control (2401.12562v1)

Published 23 Jan 2024 in eess.SY, cs.SY, and math.OC

Abstract: Application of nonlinear model predictive control (NMPC) to problems with hybrid dynamical systems, disjoint constraints, or discrete controls often results in mixed-integer formulations with both continuous and discrete decision variables. However, solving mixed-integer nonlinear programming problems (MINLP) in real-time is challenging, which can be a limiting factor in many applications. To address the computational complexity of solving mixed integer nonlinear model predictive control problem in real-time, this paper proposes an approximate mixed integer NMPC formulation based on value function approximation. Leveraging BeLLMan's principle of optimality, the key idea here is to divide the prediction horizon into two parts, where the optimal value function of the latter part of the prediction horizon is approximated offline using expert demonstrations. Doing so allows us to solve the MINMPC problem with a considerably shorter prediction horizon online, thereby reducing the online computation cost. The paper uses an inverted pendulum example with discrete controls to illustrate this approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.