Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Sources Information Fusion Learning for Multi-Points NLOS Localization (2401.12538v3)

Published 23 Jan 2024 in cs.IT and math.IT

Abstract: Accurate localization of mobile terminals is crucial for integrated sensing and communication systems. Existing fingerprint localization methods, which deduce coordinates from channel information in pre-defined rectangular areas, struggle with the heterogeneous fingerprint distribution inherent in non-line-of-sight (NLOS) scenarios. To address the problem, we introduce a novel multi-source information fusion learning framework referred to as the Autosync Multi-Domain NLOS Localization (AMDNLoc). Specifically, AMDNLoc employs a two-stage matched filter fused with a target tracking algorithm and iterative centroid-based clustering to automatically and irregularly segment NLOS regions, ensuring uniform fingerprint distribution within channel state information across frequency, power, and time-delay domains. Additionally, the framework utilizes a segment-specific linear classifier array, coupled with deep residual network-based feature extraction and fusion, to establish the correlation function between fingerprint features and coordinates within these regions. Simulation results demonstrate that AMDNLoc significantly enhances localization accuracy by over 40\% compared with traditional convolutional neural networks on the wireless artificial intelligence research dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. L. Xiao, A. Behboodi, and R. Mathar, “Learning the localization function: Machine learning approach to fingerprinting localization,” [Online] available: https://arxiv.org/abs/1803.08153, Mar. 2018.
  2. G. P. Bittencourt, A. A. Urbano, and D. C. Cunha, “A proposal of an rf fingerprint-based outdoor localization technique using irregular grid maps,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Jun. 2018.
  3. Q. D. Vo and P. De, “A survey of fingerprint-based outdoor localization,” IEEE Commun. Surv. Tutor., vol. 18, no. 1, pp. 491–506, Jun. 2015.
  4. X. Sun, X. Gao, G. Y. Li, and W. Han, “Single-site localization based on a new type of fingerprint for massive MIMO-OFDM systems,” IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6134–6145, Mar. 2018.
  5. B. Peng, G. Seco-Granados, E. Steinmetz, M. Fröhle, and H. Wymeersch, “Decentralized scheduling for cooperative localization with deep reinforcement learning,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4295–4305, Apr. 2019.
  6. X. Sun, C. Wu, X. Gao, and G. Y. Li, “Fingerprint-based localization for massive MIMO-OFDM system with deep convolutional neural networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 10 846–10 857, Sep. 2019.
  7. D. Li, Y. Lei, X. Li, and H. Zhang, “Deep learning for fingerprint localization in indoor and outdoor environments,” Int. J. Geoinf., vol. 9, no. 4, p. 267, Feb. 2020.
  8. A. Del Corte-Valiente, J. M. Gómez-Pulido, O. Gutiérrez-Blanco, and J. L. Castillo-Sequera, “Localization approach based on ray-tracing simulations and fingerprinting techniques for indoor–outdoor scenarios,” Energies, vol. 12, no. 15, p. 2943, Jul. 2019.
  9. J. Gante, G. Falcao, and L. Sousa, “Deep learning architectures for accurate millimeter wave positioning in 5g,” Neural Proc. Lett., vol. 51, no. 1, pp. 487–514, Aug. 2020.
  10. X. Gong, X. Fu, X. Liu, and X. Gao, “Transformer-based fingerprint positioning for multi-cell massive mimo-ofdm systems,” in Proc. Int. Conf. Info. Edu. Tech. (ICIET), Mar. 2023.
  11. P. Ferrand, A. Decurninge, and M. Guillaud, “DNN-based localization from channel estimates: Feature design and experimental results,” in Proc. IEEE Global Commun. Conf. (Globecom), Dec. 2020.
  12. Z. Yang, Z. Zhou, and Y. Liu, “From RSSI to CSI: Indoor localization via channel response,” ACM Comput. Surv. (CSUR), vol. 46, no. 2, pp. 1–32, Dec. 2013.
  13. U. Bhattacherjee, C. K. Anjinappa, L. Smith, E. Ozturk, and I. Guvenc, “Localization with deep neural networks using mmwave ray tracing simulations,” in Proc. IEEE SoutheastCon, Mar. 2020.
  14. F. Zhu, B. Wang, Z. Yang, C. Huang, Z. Zhang, G. C. Alexandropoulos, C. Yuen, and M. Debbah, “Robust Millimeter Beamforming via Self-Supervised Hybrid Deep Learning,” in Eur. Signal Process. Conf. (EUSIPCO), Sep. 2023.
  15. Y. Huangfu, J. Wang, S. Dai, R. Li, J. Wang, C. Huang, and Z. Zhang, “WAIR-D: Wireless AI research dataset,” [Online] available: https://arxiv.org/abs/2212.02159, Dec. 2022.
  16. B. Wang, “AMDNloc,” https://github.com/Horizontal666/AMDNloc, 2023.
  17. A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognit. Lett., vol. 31, no. 8, pp. 651–666, Jun. 2010.
  18. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Compu. Vis. Pat. Recog. (CVPR), Jun. 2016.
Citations (1)

Summary

We haven't generated a summary for this paper yet.