Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DexTouch: Learning to Seek and Manipulate Objects with Tactile Dexterity (2401.12496v2)

Published 23 Jan 2024 in cs.RO and cs.LG

Abstract: The sense of touch is an essential ability for skillfully performing a variety of tasks, providing the capacity to search and manipulate objects without relying on visual information. In this paper, we introduce a multi-finger robot system designed to manipulate objects using the sense of touch, without relying on vision. For tasks that mimic daily life, the robot uses its sense of touch to manipulate randomly placed objects in dark. The objective of this study is to enable robots to perform blind manipulation by using tactile sensation to compensate for the information gap caused by the absence of vision, given the presence of prior information. Training the policy through reinforcement learning in simulation and transferring the trained policy to the real environment, we demonstrate that blind manipulation can be applied to robots without vision. In addition, the experiments showcase the importance of tactile sensing in the blind manipulation tasks. Our project page is available at https://lee-kangwon.github.io/dextouch/

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. A. R. Sobinov and S. J. Bensmaia, “The neural mechanisms of manual dexterity,” Nature Reviews Neuroscience, vol. 22, no. 12, pp. 741–757, 2021.
  2. S. Pai, T. Chen, M. Tippur, E. Adelson, A. Gupta, and P. Agrawal, “Tactofind: A tactile only system for object retrieval,” arXiv preprint arXiv:2303.13482, 2023.
  3. Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang, “Rotating without seeing: Towards in-hand dexterity through touch,” Robotics: Science and Systems, 2023.
  4. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High performance gpu-based physics simulation for robot learning,” arXiv preprint arXiv:2108.10470, 2021.
  5. A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview of dexterous manipulation,” in IEEE International Conference on Robotics and Automation. Symposia Proceedings, 2000.
  6. O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al., “Learning dexterous in-hand manipulation,” The International Journal of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.
  7. N. Chavan-Dafle and A. Rodriguez, “Sampling-based planning of in-hand manipulation with external pushes,” in Robotics Research: The 18th International Symposium ISRR.   Springer, 2020, pp. 523–539.
  8. A. Bhatt, A. Sieler, S. Puhlmann, and O. Brock, “Surprisingly Robust In-Hand Manipulation: An Empirical Study,” in Proceedings of Robotics: Science and Systems, Virtual, July 2021.
  9. A. S. Morgan, K. Hang, B. Wen, K. Bekris, and A. M. Dollar, “Complex in-hand manipulation via compliance-enabled finger gaiting and multi-modal planning,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4821–4828, 2022.
  10. V. Kumar, Y. Tassa, T. Erez, and E. Todorov, “Real-time behaviour synthesis for dynamic hand-manipulation,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 6808–6815.
  11. Y. Bai and C. K. Liu, “Dexterous manipulation using both palm and fingers,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 1560–1565.
  12. A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk, K. Van Wyk, A. Zhurkevich, B. Sundaralingam et al., “Dextreme: Transfer of agile in-hand manipulation from simulation to reality,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5977–5984.
  13. T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object re-orientation,” in Conference on Robot Learning.   PMLR, 2022, pp. 297–307.
  14. Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang, “Dexpoint: Generalizable point cloud reinforcement learning for sim-to-real dexterous manipulation,” in Conference on Robot Learning.   PMLR, 2023, pp. 594–605.
  15. T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal, “Visual dexterity: In-hand reorientation of novel and complex object shapes,” Science Robotics, vol. 8, no. 84, p. eadc9244, 2023.
  16. A. Bhatt, A. Sieler, S. Puhlmann, and O. Brock, “Surprisingly robust in-hand manipulation: An empirical study,” arXiv preprint arXiv:2201.11503, 2022.
  17. Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang, “Dexmv: Imitation learning for dexterous manipulation from human videos,” in European Conference on Computer Vision.   Springer, 2022, pp. 570–587.
  18. A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine, “Learning complex dexterous manipulation with deep reinforcement learning and demonstrations,” arXiv preprint arXiv:1709.10087, 2017.
  19. S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto, “Dexterous imitation made easy: A learning-based framework for efficient dexterous manipulation,” in 2023 ieee international conference on robotics and automation (icra).   IEEE, 2023, pp. 5954–5961.
  20. Y. Chebotar, O. Kroemer, and J. Peters, “Learning robot tactile sensing for object manipulation,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 3368–3375.
  21. Q. Li, O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter, “A review of tactile information: Perception and action through touch,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1619–1634, 2020.
  22. D.-K. Ko, K.-W. Lee, D. H. Lee, and S.-C. Lim, “Vision-based interaction force estimation for robot grip motion without tactile/force sensor,” Expert Systems with Applications, vol. 211, p. 118441, 2023.
  23. K.-W. Lee, D.-K. Ko, and S.-C. Lim, “Toward vision-based high sampling interaction force estimation with master position and orientation for teleoperation,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6640–6646, 2021.
  24. W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, p. 2762, 2017.
  25. A. Padmanabha, F. Ebert, S. Tian, R. Calandra, C. Finn, and S. Levine, “Omnitact: A multi-directional high-resolution touch sensor,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 618–624.
  26. S. Dong, D. K. Jha, D. Romeres, S. Kim, D. Nikovski, and A. Rodriguez, “Tactile-rl for insertion: Generalization to objects of unknown geometry,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6437–6443.
  27. J. Xu, S. Song, and M. Ciocarlie, “Tandem: Learning joint exploration and decision making with tactile sensors,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 391–10 398, 2022.
  28. S. Suresh, M. Bauza, K.-T. Yu, J. G. Mangelson, A. Rodriguez, and M. Kaess, “Tactile slam: Real-time inference of shape and pose from planar pushing,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 11 322–11 328.
  29. J. Liang, A. Handa, K. Van Wyk, V. Makoviychuk, O. Kroemer, and D. Fox, “In-hand object pose tracking via contact feedback and gpu-accelerated robotic simulation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 6203–6209.
  30. D. Driess, P. Englert, and M. Toussaint, “Active learning with query paths for tactile object shape exploration,” in 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2017, pp. 65–72.
  31. A. Petrovskaya and O. Khatib, “Global localization of objects via touch,” IEEE Transactions on Robotics, vol. 27, no. 3, pp. 569–585, 2011.
  32. B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The ycb object and model set: Towards common benchmarks for manipulation research,” in 2015 international conference on advanced robotics (ICAR).   IEEE, 2015, pp. 510–517.
  33. A. Petrenko, A. Allshire, G. State, A. Handa, and V. Makoviychuk, “Dexpbt: Scaling up dexterous manipulation for hand-arm systems with population based training,” in RSS, 2023.
  34. V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of the 27th international conference on machine learning (ICML-10), 2010, pp. 807–814.
  35. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets