Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connected McMullen-like Julia sets in a Chebyshev-Halley Family (2401.12374v2)

Published 22 Jan 2024 in math.DS

Abstract: In this paper we study a one parameter family of rational maps obtained by applying the Chebyshev-Halley root finding algorithms. We show that the dynamics near parameters where the family presents some degeneracy might be understood from the point of view of singular perturbations. More precisely, we relate the dynamics of those maps with the one of the McMullen family $M_{\lambda}(z)=z4 + \lambda /z2$, using quasi-conformal surgery.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. L. V. Ahlfors. Lectures on quasiconformal mappings, volume 38 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, 2006.
  2. B. Branner and N. Fagella. Quasiconformal surgery in holomorphic dynamics, volume 141 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2014.
  3. Convergence regions for the Chebyshev-Halley family. Commun Nonlinear Sci Numer Simulat, 56:508–525, 2018.
  4. Connectivity of the julia set for the chebyshev-halley family on degree n polynomials. Commun Nonlinear Sci Numer Simulat, 82:105026, 2020.
  5. Dynamics of a family of Chebyshev-Halley type methods. Appl. Math. Comput., 219(16):8568–8583, 2013.
  6. The escape trichotomy for singularly perturbed rational maps. Indiana Univ. Math. J., 54(6):1621–1634, 2005.
  7. A. Douady and J. H. Hubbard. On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4), 18(2):287–343, 1985.
  8. M. Lyubich. Feigenbaum-coullet-tresser universality and milnor’s hairiness conjecture. Annals of Mathematics, 149(2):319–420, 1999.
  9. On the dynamics of rational maps. Ann. Sci. École Norm. Sup. (4), 16(2):193–217, 1983.
  10. C. McMullen. Automorphisms of rational maps. In Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), volume 10 of Math. Sci. Res. Inst. Publ., pages 31–60. Springer, New York, 1988.
  11. Curtis T. McMullen. The Mandelbrot set is universal. In The Mandelbrot set, theme and variations, volume 274 of Lecture Notes in Math., pages 1–17. Cambridge Univ. Press, 2000.
  12. N. Steinmetz. The formula of Riemann-Hurwitz and iteration of rational functions. Complex Variables Theory Appl., 22(3-4):203–206, 1993.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com