Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

1/c deformations of AdS$_3$ boundary conditions and the Dym hierarchy (2401.12338v2)

Published 22 Jan 2024 in hep-th and gr-qc

Abstract: This work introduces a novel family of boundary conditions for AdS$_3$ General Relativity, constructed through a polynomial expansion in negative integer powers of the Brown-Henneaux central charge. The associated dynamics is governed by the Dym hierarchy of integrable equations. It is shown that the infinite set of Dym conserved charges generates an abelian asymptotic symmetry group. Additionally, these boundary conditions encompass black hole solutions, whose thermodynamic properties are examined.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (127)
  1. Charles B. Thorn “Reformulating string theory with the 1/N expansion” In The First International A.D. Sakharov Conference on Physics, 1991 arXiv:hep-th/9405069
  2. Gerard ’t Hooft “Dimensional reduction in quantum gravity” In Conf. Proc. C 930308, 1993, pp. 284–296 arXiv:gr-qc/9310026
  3. Leonard Susskind “The World as a hologram” In J. Math. Phys. 36, 1995, pp. 6377–6396 DOI: 10.1063/1.531249
  4. “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity” In Commun. Math. Phys. 104, 1986, pp. 207–226 DOI: 10.1007/BF01211590
  5. Juan Martin Maldacena “The Large N limit of superconformal field theories and supergravity” In Adv. Theor. Math. Phys. 2, 1998, pp. 231–252 DOI: 10.1023/A:1026654312961
  6. Edward Witten “Anti-de Sitter space and holography” In Adv. Theor. Math. Phys. 2, 1998, pp. 253–291 DOI: 10.4310/ATMP.1998.v2.n2.a2
  7. S.S. Gubser, Igor R. Klebanov and Alexander M. Polyakov “Gauge theory correlators from noncritical string theory” In Phys. Lett. B 428, 1998, pp. 105–114 DOI: 10.1016/S0370-2693(98)00377-3
  8. H. Bondi, M.G.J. Burg and A.W.K. Metzner “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems” In Proc. Roy. Soc. Lond. A 269, 1962, pp. 21–52 DOI: 10.1098/rspa.1962.0161
  9. R. Sachs “Asymptotic Symmetries in Gravitational Theory” In Phys. Rev. 128 American Physical Society, 1962, pp. 2851–2864 DOI: 10.1103/PhysRev.128.2851
  10. R. Penrose “Zero rest mass fields including gravitation: Asymptotic behavior” In Proc. Roy. Soc. Lond. A 284, 1965, pp. 159 DOI: 10.1098/rspa.1965.0058
  11. Robert Geroch “Asymptotic Structure of Space-Time” In Asymptotic Structure of Space-Time Boston, MA: Springer US, 1977, pp. 1–105 DOI: 10.1007/978-1-4684-2343-3˙1
  12. “Aspects of the BMS/CFT correspondence” In JHEP 05, 2010, pp. 062 DOI: 10.1007/JHEP05(2010)062
  13. “Supertranslations call for superrotations” In PoS CNCFG2010, 2010, pp. 010 DOI: 10.22323/1.127.0010
  14. “BMS charge algebra” In JHEP 12, 2011, pp. 105 DOI: 10.1007/JHEP12(2011)105
  15. “Relaxing the Parity Conditions of Asymptotically Flat Gravity” [Erratum: Class.Quant.Grav. 30, 039501 (2013)] In Class. Quant. Grav. 28, 2011, pp. 245016 DOI: 10.1088/0264-9381/28/24/245016
  16. Glenn Barnich “Entropy of three-dimensional asymptotically flat cosmological solutions” In JHEP 10, 2012, pp. 095 DOI: 10.1007/JHEP10(2012)095
  17. “Holography of 3D Flat Cosmological Horizons” In Phys. Rev. Lett. 110.14, 2013, pp. 141302 DOI: 10.1103/PhysRevLett.110.141302
  18. Glenn Barnich, Andres Gomberoff and Hernan A. Gonzalez “The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes” In Phys. Rev. D 86, 2012, pp. 024020 DOI: 10.1103/PhysRevD.86.024020
  19. “Einstein-Yang-Mills theory: Asymptotic symmetries” In Phys. Rev. D 88, 2013, pp. 103006 DOI: 10.1103/PhysRevD.88.103006
  20. “Asymptotic symmetries and subleading soft graviton theorem” In Phys. Rev. D 90.12, 2014, pp. 124028 DOI: 10.1103/PhysRevD.90.124028
  21. “Notes on the BMS group in three dimensions: I. Induced representations” In JHEP 06, 2014, pp. 129 DOI: 10.1007/JHEP06(2014)129
  22. C. Duval, G.W. Gibbons and P.A. Horvathy “Conformal Carroll groups and BMS symmetry” In Class. Quant. Grav. 31, 2014, pp. 092001 DOI: 10.1088/0264-9381/31/9/092001
  23. Robert F. Penna “BMS invariance and the membrane paradigm” In JHEP 03, 2016, pp. 023 DOI: 10.1007/JHEP03(2016)023
  24. Oscar Fuentealba, Javier Matulich and Ricardo Troncoso “Asymptotically flat structure of hypergravity in three spacetime dimensions” In JHEP 10, 2015, pp. 009 DOI: 10.1007/JHEP10(2015)009
  25. Glenn Barnich, Pierre-Henry Lambert and Pujian Mao “Three-dimensional asymptotically flat Einstein–Maxwell theory” In Class. Quant. Grav. 32.24, 2015, pp. 245001 DOI: 10.1088/0264-9381/32/24/245001
  26. “Notes on the BMS group in three dimensions: II. Coadjoint representation” In JHEP 03, 2015, pp. 033 DOI: 10.1007/JHEP03(2015)033
  27. “Canonical realization of Bondi-Metzner-Sachs symmetry: Quadratic Casimir” In Phys. Rev. D 93.2, 2016, pp. 025030 DOI: 10.1103/PhysRevD.93.025030
  28. Carles Batlle, Victor Campello and Joaquim Gomis “Canonical realization of ( 2+1 )-dimensional Bondi-Metzner-Sachs symmetry” In Phys. Rev. D 96.2, 2017, pp. 025004 DOI: 10.1103/PhysRevD.96.025004
  29. Daniel Grumiller, Wout Merbis and Max Riegler “Most general flat space boundary conditions in three-dimensional Einstein gravity” In Class. Quant. Grav. 34.18, 2017, pp. 184001 DOI: 10.1088/1361-6382/aa8004
  30. Cédric Troessaert “The BMS4 algebra at spatial infinity” In Class. Quant. Grav. 35.7, 2018, pp. 074003 DOI: 10.1088/1361-6382/aaae22
  31. Glenn Barnich “Centrally extended BMS4 Lie algebroid” In JHEP 06, 2017, pp. 007 DOI: 10.1007/JHEP06(2017)007
  32. Carles Batlle, Diego Delmastro and Joaquim Gomis “Non-relativistic Bondi Metzner Sachs algebra” In Class. Quant. Grav. 34.18, 2017, pp. 184002 DOI: 10.1088/1361-6382/aa8388
  33. Eliot Hijano “Semi-classical BMS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT blocks and flat holography” In JHEP 10, 2018, pp. 044 DOI: 10.1007/JHEP10(2018)044
  34. “BMS Group at Spatial Infinity: the Hamiltonian (ADM) approach” In JHEP 03, 2018, pp. 147 DOI: 10.1007/JHEP03(2018)147
  35. Claudio Bunster, Andrés Gomberoff and Alfredo Pérez “Regge-Teitelboim analysis of the symmetries of electromagnetic and gravitational fields on asymptotically null spacelike surfaces”, 2018 arXiv:1805.03728 [hep-th]
  36. Geoffrey Compère, Adrien Fiorucci and Romain Ruzziconi “The ΛΛ\Lambdaroman_Λ-BMS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT group of dS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT and new boundary conditions for AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT” [Erratum: Class.Quant.Grav. 38, 229501 (2021)] In Class. Quant. Grav. 36.19, 2019, pp. 195017 DOI: 10.1088/1361-6382/ab3d4b
  37. Geoffrey Compère, Adrien Fiorucci and Romain Ruzziconi “The ΛΛ\Lambdaroman_Λ-BMS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT charge algebra” In JHEP 10, 2020, pp. 205 DOI: 10.1007/JHEP10(2020)205
  38. “Superconformal Bondi-Metzner-Sachs Algebra in Three Dimensions” In Phys. Rev. Lett. 126.9, 2021, pp. 091602 DOI: 10.1103/PhysRevLett.126.091602
  39. “Asymptotic structure of the Rarita-Schwinger theory in four spacetime dimensions at spatial infinity” In JHEP 02, 2021, pp. 031 DOI: 10.1007/JHEP02(2021)031
  40. “Generalized BMS charge algebra” In Phys. Rev. D 101.10, 2020, pp. 104039 DOI: 10.1103/PhysRevD.101.104039
  41. “Bondi-Metzner-Sachs Group in Five Spacetime Dimensions” In Phys. Rev. Lett. 128.5, 2022, pp. 051103 DOI: 10.1103/PhysRevLett.128.051103
  42. “Asymptotic structure of the gravitational field in five spacetime dimensions: Hamiltonian analysis” In JHEP 07, 2022, pp. 149 DOI: 10.1007/JHEP07(2022)149
  43. Oscar Fuentealba, Marc Henneaux and Cédric Troessaert “Logarithmic supertranslations and supertranslation-invariant Lorentz charges” In JHEP 02, 2023, pp. 248 DOI: 10.1007/JHEP02(2023)248
  44. Glenn Barnich, Kevin Nguyen and Romain Ruzziconi “Geometric action for extended Bondi-Metzner-Sachs group in four dimensions” In JHEP 12, 2022, pp. 154 DOI: 10.1007/JHEP12(2022)154
  45. “Massless scalars and higher-spin BMS in any dimension” In JHEP 11, 2022, pp. 022 DOI: 10.1007/JHEP11(2022)022
  46. Oscar Fuentealba, Marc Henneaux and Cédric Troessaert “Asymptotic Symmetry Algebra of Einstein Gravity and Lorentz Generators” In Phys. Rev. Lett. 131.11, 2023, pp. 111402 DOI: 10.1103/PhysRevLett.131.111402
  47. “The Kerr/CFT Correspondence” In Phys. Rev. D 80, 2009, pp. 124008 DOI: 10.1103/PhysRevD.80.124008
  48. Geoffrey Compère “The Kerr/CFT correspondence and its extensions” In Living Rev. Rel. 15, 2012, pp. 11 DOI: 10.1007/s41114-017-0003-2
  49. D.T. Son “Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry” In Phys. Rev. D 78, 2008, pp. 046003 DOI: 10.1103/PhysRevD.78.046003
  50. Sean A. Hartnoll, Andrew Lucas and Subir Sachdev “Holographic quantum matter”, 2016 arXiv:1612.07324 [hep-th]
  51. Stephen W. Hawking, Malcolm J. Perry and Andrew Strominger “Soft Hair on Black Holes” In Phys. Rev. Lett. 116.23, 2016, pp. 231301 DOI: 10.1103/PhysRevLett.116.231301
  52. Stephen W. Hawking, Malcolm J. Perry and Andrew Strominger “Superrotation Charge and Supertranslation Hair on Black Holes” In JHEP 05, 2017, pp. 161 DOI: 10.1007/JHEP05(2017)161
  53. “Supertranslations and Superrotations at the Black Hole Horizon” In Phys. Rev. Lett. 116.9, 2016, pp. 091101 DOI: 10.1103/PhysRevLett.116.091101
  54. “Extended Symmetries at the Black Hole Horizon” In JHEP 09, 2016, pp. 100 DOI: 10.1007/JHEP09(2016)100
  55. “Colored black holes and Kac-Moody algebra” In Phys. Rev. D 105.6, 2022, pp. 064006 DOI: 10.1103/PhysRevD.105.064006
  56. Gaston Giribet, Juan Laurnagaray and Pedro Schmied “Probing the near-horizon geometry of black rings” In Phys. Rev. D 108.2, 2023, pp. 024061 DOI: 10.1103/PhysRevD.108.024061
  57. “BMS in Cosmology” In JCAP 05, 2016, pp. 059 DOI: 10.1088/1475-7516/2016/05/059
  58. “BMS-like symmetries in cosmology” In Phys. Rev. D 102.10, 2020, pp. 104043 DOI: 10.1103/PhysRevD.102.104043
  59. “Asymptotic symmetries in spatially flat FRW spacetimes” In Phys. Rev. D 103.6, 2021, pp. 064009 DOI: 10.1103/PhysRevD.103.064009
  60. “Holography and black holes in asymptotically flat FLRW spacetimes” In Phys. Rev. D 103.10, 2021, pp. 104035 DOI: 10.1103/PhysRevD.103.104035
  61. “Celestial holography: Lectures on asymptotic symmetries” In SciPost Phys. Lect. Notes 47, 2022, pp. 1 DOI: 10.21468/SciPostPhysLectNotes.47
  62. Sabrina Pasterski “A Chapter on Celestial Holography”, 2023 arXiv:2310.04932 [hep-th]
  63. Laura Donnay “Celestial holography: An asymptotic symmetry perspective”, 2023 arXiv:2310.12922 [hep-th]
  64. “Black holes and asymptotics of 2+1 gravity coupled to a scalar field” In Phys. Rev. D 65, 2002, pp. 104007 DOI: 10.1103/PhysRevD.65.104007
  65. “Consistent Boundary Conditions for New Massive Gravity in A⁢d⁢S3𝐴𝑑subscript𝑆3AdS_{3}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT” In JHEP 05, 2009, pp. 039 DOI: 10.1088/1126-6708/2009/05/039
  66. Marc Henneaux, Cristian Martinez and Ricardo Troncoso “Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity” In Phys. Rev. D 84, 2011, pp. 124016 DOI: 10.1103/PhysRevD.84.124016
  67. Marc Henneaux, Cristian Martinez and Ricardo Troncoso “More on Asymptotically Anti-de Sitter Spaces in Topologically Massive Gravity” In Phys. Rev. D 82, 2010, pp. 064038 DOI: 10.1103/PhysRevD.82.064038
  68. Geoffrey Compère, Wei Song and Andrew Strominger “New Boundary Conditions for AdS3” In JHEP 05, 2013, pp. 152 DOI: 10.1007/JHEP05(2013)152
  69. Cédric Troessaert “Enhanced asymptotic symmetry algebra of A⁢d⁢S3𝐴𝑑subscript𝑆3AdS_{3}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT” In JHEP 08, 2013, pp. 044 DOI: 10.1007/JHEP08(2013)044
  70. Steven G. Avery, Rohan R. Poojary and Nemani V. Suryanarayana “An sl(2,ℝℝ\mathbb{R}blackboard_R) current algebra from A⁢d⁢S3𝐴𝑑subscript𝑆3AdS_{3}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT gravity” In JHEP 01, 2014, pp. 144 DOI: 10.1007/JHEP01(2014)144
  71. “Near-Horizon Geometry and Warped Conformal Symmetry” In JHEP 03, 2016, pp. 187 DOI: 10.1007/JHEP03(2016)187
  72. “Most general AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT boundary conditions” In JHEP 10, 2016, pp. 023 DOI: 10.1007/JHEP10(2016)023
  73. C.E. Valcárcel “New boundary conditions for (extended) AdS3subscriptAdS3\mathrm{AdS}_{3}roman_AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT supergravity” In Class. Quant. Grav. 36, 2019, pp. 065002 DOI: 10.1088/1361-6382/ab04da
  74. Marc Henneaux, Wout Merbis and Arash Ranjbar “Asymptotic dynamics of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT gravity with two asymptotic regions” In JHEP 03, 2020, pp. 064 DOI: 10.1007/JHEP03(2020)064
  75. “Weyl charges in asymptotically locally AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT spacetimes” In Phys. Rev. D 103.4, 2021, pp. 046003 DOI: 10.1103/PhysRevD.103.046003
  76. “Generalized Black Holes in Three-dimensional Spacetime” In JHEP 05, 2014, pp. 031 DOI: 10.1007/JHEP05(2014)031
  77. Alfredo Pérez, David Tempo and Ricardo Troncoso “Boundary conditions for General Relativity on AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT and the KdV hierarchy” In JHEP 06, 2016, pp. 103 DOI: 10.1007/JHEP06(2016)103
  78. “A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories” In Phys. Lett. B 180, 1986, pp. 89 DOI: 10.1016/0370-2693(86)90140-1
  79. Edward Witten “(2+1)-Dimensional Gravity as an Exactly Soluble System” In Nucl. Phys. B 311, 1988, pp. 46 DOI: 10.1016/0550-3213(88)90143-5
  80. Oliver Coussaert, Marc Henneaux and Peter Driel “The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant” In Class. Quant. Grav. 12, 1995, pp. 2961–2966 DOI: 10.1088/0264-9381/12/12/012
  81. “Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-De Vries equations” In Russ. Math. Surveys 30.5, 1975, pp. 77–113 DOI: 10.1070/RM1975v030n05ABEH001522
  82. “Integrable systems with BMS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT Poisson structure and the dynamics of locally flat spacetimes” In JHEP 01, 2018, pp. 148 DOI: 10.1007/JHEP01(2018)148
  83. “Revisiting the asymptotic dynamics of General Relativity on AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT” In JHEP 12, 2018, pp. 115 DOI: 10.1007/JHEP12(2018)115
  84. “Lifshitz Scaling, Microstate Counting from Number Theory and Black Hole Entropy” In JHEP 06, 2019, pp. 054 DOI: 10.1007/JHEP06(2019)054
  85. “Boundary conditions for General Relativity in three-dimensional spacetimes, integrable systems and the KdV/mKdV hierarchies” In JHEP 08, 2019, pp. 079 DOI: 10.1007/JHEP08(2019)079
  86. Cristián Erices, Miguel Riquelme and Pablo Rodríguez “BTZ black hole with Korteweg–de Vries-type boundary conditions: Thermodynamics revisited” In Phys. Rev. D 100.12, 2019, pp. 126026 DOI: 10.1103/PhysRevD.100.126026
  87. “Integrable systems and the boundary dynamics of higher spin gravity on AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT” In JHEP 11, 2020, pp. 089 DOI: 10.1007/JHEP11(2020)089
  88. “KdV-charged black holes” In JHEP 05, 2020, pp. 041 DOI: 10.1007/JHEP05(2020)041
  89. “Integrable Systems and Spacetime Dynamics” In Phys. Rev. Lett. 127.16, 2021, pp. 161601 DOI: 10.1103/PhysRevLett.127.161601
  90. Martin Kruskal “Nonlinear wave equations” In Dynamical Systems, Theory and Applications: Battelle Seattle 1974 Rencontres Berlin, Heidelberg: Springer Berlin Heidelberg, 1975, pp. 310–354 DOI: 10.1007/3-540-07171-7˙9
  91. “The Inverse scattering transform fourier analysis for nonlinear problems” In Stud. Appl. Math. 53, 1974, pp. 249–315
  92. “Solitons: An Introduction”, 1989
  93. P.J. Olver “Applications of Lie Groups to Differential Equations”, Graduate Texts in Mathematics Springer New York, 2000 URL: https://books.google.cl/books?id=sI2bAxgLMXYC
  94. Pierre C. Sabatier “ON SOME SPECTRAL PROBLEMS AND ISOSPECTRAL EVOLUTIONS CONNECTED WITH THE CLASSICAL STRING PROBLEM. 2. EVOLUTION EQUATION” In Lett. Nuovo Cim. 26, 1979, pp. 483 DOI: 10.1007/BF02750261
  95. Li Yi-Shen “Evolution equations associated with the eigenvalue problem based on the equation φx⁢x=[u⁢(x)−k2⁢ρ2⁢(x)]⁢φsubscript𝜑𝑥𝑥delimited-[]𝑢𝑥superscript𝑘2superscript𝜌2𝑥𝜑\varphi_{xx}=\left[u(x)-k^{2}\rho^{2}(x)\right]\varphiitalic_φ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT = [ italic_u ( italic_x ) - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x ) ] italic_φ” In Il Nuovo Cimento B (1971-1996) 70.1, 1982, pp. 1–12 DOI: 10.1007/BF02814006
  96. Leo P. Kadanoff “Exact solutions for the Saffman-Taylor problem with surface tension” In Phys. Rev. Lett. 65 American Physical Society, 1990, pp. 2986–2988 DOI: 10.1103/PhysRevLett.65.2986
  97. B Fuchssteiner, T Schulze and S Carillo “Explicit solutions for the Harry Dym equation” In Journal of Physics A: Mathematical and General 25.1, 1992, pp. 223 DOI: 10.1088/0305-4470/25/1/025
  98. Reza Mokhtari “Exact solutions of the Harry Dym equation” In Communications in Theoretical Physics 55.2, 2011, pp. 204–208
  99. Miki Wadati, Yoshi H. Ichikawa and Toru Shimizu “Cusp Soliton of a New Integrable Nonlinear Evolution Equation” In Progress of Theoretical Physics 64.6, 1980, pp. 1959–1967 DOI: 10.1143/PTP.64.1959
  100. D.P. Novikov “Algebraic-geometric solutions of the Harry Dym equation” In Siberian Mathematical Journal 40.1, 1999, pp. 136–140 DOI: 10.1007/BF02674299
  101. “Elliptic Solutions, Recursion Operators and Complete Lie-Backlund Symmetry for the Harry-Dym Equation” Published under licence by IOP Publishing Ltd In Physica Scripta 29.4, 1984, pp. 293 DOI: 10.1088/0031-8949/29/4/002
  102. L.A. Bordag “Periodical solutions of the Harry Dym equation and related problems”, 1995
  103. O. González-Gaxiola, J.Ruiz Chávez and Sunday O. Edeki “Iterative method for constructing analytical solutions to the Harry-Dym initial value problem” In International Journal of Applied Mathematics, 2018 URL: https://api.semanticscholar.org/CorpusID:56079126
  104. “Long time behavior and soliton solution for the Harry Dym equation” In Journal of Mathematical Analysis and Applications 480.1, 2019, pp. 123248 DOI: https://doi.org/10.1016/j.jmaa.2019.06.019
  105. M.A. Assabaai and Omer Faraj Mukherij “Exact solutions of the Harry Dym Equation using Lie group method” In University of Aden Journal of Natural and Applied Sciences, 2022 URL: https://api.semanticscholar.org/CorpusID:247639623
  106. “On the double-pole and two-soliton solutions of the Harry Dym equation” In Applied Mathematics Letters 104, 2020, pp. 106276 DOI: https://doi.org/10.1016/j.aml.2020.106276
  107. Zhu Li “Algebro-Geometric Solutions of the Harry Dym Hierarchy” In International Journal of Nonlinear Sciences and Numerical Simulation 18.2, 2017, pp. 129–136 DOI: doi:10.1515/ijnsns-2016-0057
  108. “Some new integrable nonlinear evolution equations in 2 + 1 dimensions” In Physics Letters A 102.1, 1984, pp. 15–17 DOI: https://doi.org/10.1016/0375-9601(84)90442-0
  109. Franco Magri “A simple model of the integrable Hamiltonian equation” In J. Math. Phys. 19, 1978, pp. 1156–1162 DOI: 10.1063/1.523777
  110. “Lie-Bäcklund symmetries for the Harry-Dym equation” In Phys. Rev. D 27 American Physical Society, 1983, pp. 1406–1408 DOI: 10.1103/PhysRevD.27.1406
  111. “Asymptotically anti-De Sitter Spaces” In Commun. Math. Phys. 98, 1985, pp. 391–424 DOI: 10.1007/BF01205790
  112. Marika Taylor “Lifshitz holography” In Class. Quant. Grav. 33.3, 2016, pp. 033001 DOI: 10.1088/0264-9381/33/3/033001
  113. Hernan A. Gonzalez, David Tempo and Ricardo Troncoso “Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes” In JHEP 11, 2011, pp. 066 DOI: 10.1007/JHEP11(2011)066
  114. Jelle Hartong, Elias Kiritsis and Niels A. Obers “Lifshitz space–times for Schrödinger holography” In Phys. Lett. B 746, 2015, pp. 318–324 DOI: 10.1016/j.physletb.2015.05.010
  115. José Figueroa-O’Farrill, Ross Grassie and Stefan Prohazka “Lifshitz symmetry: Lie algebras, spacetimes and particles” In SciPost Phys. 14.3, 2023, pp. 035 DOI: 10.21468/SciPostPhys.14.3.035
  116. “Emergent Spacetime and Holographic CFTs” In JHEP 10, 2012, pp. 106 DOI: 10.1007/JHEP10(2012)106
  117. Thomas Hartman “Entanglement Entropy at Large Central Charge”, 2013 arXiv:1303.6955 [hep-th]
  118. “A Quantum Correction To Chaos” In JHEP 05, 2016, pp. 070 DOI: 10.1007/JHEP05(2016)070
  119. “Entanglement negativity at large central charge” In Phys. Rev. D 103.10, 2021, pp. 106003 DOI: 10.1103/PhysRevD.103.106003
  120. “Exact generalized partition function of 2D CFTs at large central charge” In JHEP 05, 2019, pp. 077 DOI: 10.1007/JHEP05(2019)077
  121. Enrico M. Brehm and Diptarka Das “Korteweg–de Vries characters in large central charge CFTs” In Phys. Rev. D 101.8, 2020, pp. 086025 DOI: 10.1103/PhysRevD.101.086025
  122. “Semiclassical 3D gravity as an average of large-c CFTs” In JHEP 12, 2022, pp. 069 DOI: 10.1007/JHEP12(2022)069
  123. “Resurgence, conformal blocks, and the sum over geometries in quantum gravity” In JHEP 05, 2023, pp. 166 DOI: 10.1007/JHEP05(2023)166
  124. R. Benguria, P. Cordero and C. Teitelboim “Aspects of the Hamiltonian Dynamics of Interacting Gravitational Gauge and Higgs Fields with Applications to Spherical Symmetry” In Nucl. Phys. B 122, 1977, pp. 61–99 DOI: 10.1016/0550-3213(77)90426-6
  125. Máximo Bañados and Ignacio A. Reyes “A short review on Noether’s theorems, gauge symmetries and boundary terms” In Int. J. Mod. Phys. D 25.10, 2016, pp. 1630021 DOI: 10.1142/S0218271816300214
  126. Gui‐zhang Tu “The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems” In Journal of Mathematical Physics 30.2, 1989, pp. 330–338 DOI: 10.1063/1.528449
  127. “Role of Surface Integrals in the Hamiltonian Formulation of General Relativity” In Annals Phys. 88, 1974, pp. 286 DOI: 10.1016/0003-4916(74)90404-7

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com