Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantised Neural Network Accelerators for Low-Power IDS in Automotive Networks (2401.12240v1)

Published 19 Jan 2024 in cs.CR, cs.AR, cs.LG, cs.SY, and eess.SY

Abstract: In this paper, we explore low-power custom quantised Multi-Layer Perceptrons (MLPs) as an Intrusion Detection System (IDS) for automotive controller area network (CAN). We utilise the FINN framework from AMD/Xilinx to quantise, train and generate hardware IP of our MLP to detect denial of service (DoS) and fuzzying attacks on CAN network, using ZCU104 (XCZU7EV) FPGA as our target ECU architecture with integrated IDS capabilities. Our approach achieves significant improvements in latency (0.12 ms per-message processing latency) and inference energy consumption (0.25 mJ per inference) while achieving similar classification performance as state-of-the-art approaches in the literature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger vehicle,” Black Hat USA, vol. 2015, no. S 91, 2015.
  2. H. Ma, J. Cao, B. Mi, D. Huang, Y. Liu, and S. Li, “A GRU-Based Lightweight System for CAN Intrusion Detection in Real Time,” Security and Communication Networks, vol. 2022, 2022.
  3. A. K. Desta, S. Ohira, I. Arai, and K. Fujikawa, “MLIDS: Handling Raw High-Dimensional CAN Bus Data Using Long Short-Term Memory Networks for Intrusion Detection in In-Vehicle Networks,” in Proc. Intl. Telecommunication Networks and Applications Conference (ITNAC), pp. 1–7, IEEE, 2020.
  4. H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion detection using deep convolutional neural network,” Vehicular Communications, vol. 21, p. 100198, 2020.
  5. S. Khandelwal, E. Wadhwa, and S. Shreejith, “Deep learning-based embedded intrusion detection system for automotive can,” in 2022 IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 88–92, IEEE, 2022.
  6. S. Khandelwal and S. Shreejith, “A Lightweight Multi-Attack CAN Intrusion Detection System on Hybrid FPGAs,” in Proc. Intl. Conf. on Field Programmable Logic and Applications (FPL), pp. 425–429, IEEE, 2022.
  7. Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable binarized neural network inference,” in Proc. Intl. Symposium on Field-Programmable Gate Arrays (FPGA), pp. 65–74, 2017.
  8. A. Pappalardo, “Xilinx/brevitas,” 2021.
  9. L. Yang, A. Moubayed, and A. Shami, “MTH-IDS: A Multitiered Hybrid Intrusion Detection System for Internet of Vehicles,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 616–632, 2021.
  10. K. Agrawal, T. Alladi, A. Agrawal, V. Chamola, and A. Benslimane, “NovelADS: A Novel Anomaly Detection System for Intra-Vehicular Networks,” IEEE Transactions on Intelligent Transportation Systems, 2022.
  11. P. Cheng, K. Xu, S. Li, and M. Han, “TCAN-IDS: Intrusion Detection System for Internet of Vehicle Using Temporal Convolutional Attention Network,” Symmetry, vol. 14, no. 2, p. 310, 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.