Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Randomized Runge-Kutta Method for time-irregular delay differential equations (2401.11658v1)

Published 22 Jan 2024 in math.NA, cs.NA, and math.PR

Abstract: In this paper we investigate the existence, uniqueness and approximation of solutions of delay differential equations (DDEs) with the right-hand side functions $f=f(t,x,z)$ that are Lipschitz continuous with respect to $x$ but only H\"older continuous with respect to $(t,z)$. We give a construction of the randomized two-stage Runge-Kutta scheme for DDEs and investigate its upper error bound in the $Lp(\Omega)$-norm for $p\in [2,+\infty)$. Finally, we report on results of numerical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. J. Andres and L. Górniewicz. Topological Fixed Point Principles for Boundary Value Problems, vol. I. Springer Science+Business Media Dordrecht, 2003.
  2. A. Bellen and M. Zennaro. Numerical methods for delay differential equations. Oxford, New York, 2003.
  3. Randomized Runge-Kutta method–Stability and convergence under inexact information. J. Complex., 65:101554, 2021.
  4. T. Bochacik and P. Przybyłowicz. On the randomized Euler schemes for ODEs under inexact information. Numer. Algor., 91:1205–1229, 2022.
  5. H. Brunner and E. Hairer. A general-purpose implicit-explicit Runge-Kutta integrator for delay differential equations. BIT Numerical Mathematics, 52(2):293–314, 2012.
  6. On mathematical aspects of evolution of dislocation density in metallic materials. IEEE Access, 10:86793–86811, 2022.
  7. Approximation of solutions of DDEs under nonstandard assumptions via Euler scheme. Numer. Algor., 91:1829–1854, 2022.
  8. T. Daun. On the randomized solution of initial value problems. J. Complex., 27:300–311, 2011.
  9. Existence, uniqueness and approximation of solutions to Carathéodory delay differential equations. Journal of Computational and Applied Mathematics, 436:115411, 2024.
  10. C. A. Eulalia and C. Lubich. An analysis of multistep Runge-Kutta methods for delay differential equations. Mathematical and Computer Modelling, 34(10-11):1197–1213, 2001.
  11. J. K. Hale. Theory of Functional Differential Equations. Applied Mathematical Sciences. Springer New York, 1977.
  12. Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993.
  13. S. Heinrich and B. Milla. The randomized complexity of initial value problems. J. Complex., 24:77–88, 2008.
  14. A. Jentzen and A. Neuenkirch. A random Euler scheme for Carathéodory differential equations. J. Comp. Appl. Math., 224:346–359, 2009.
  15. B. Kacewicz. Almost optimal solution of initial-value problems by randomized and quantum algorithms. J. Complex., 22:676–690, 2006.
  16. R. Kruse and Y. Wu. Error analysis of randomized Runge–Kutta methods for differential equations with time-irregular coefficients. Comput. Methods Appl. Math., 17:479–498, 2017.
  17. A randomized milstein method for stochastic differential equations with non-differentiable drift coefficients. arXiv preprint arXiv:1706.09964, 2017.
  18. J. Kuehn. Numerical methods for delay differential equations. World Scientific Publishing Company, 2004.
  19. E. Pardoux and A. Rascanu. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Stochastic Modelling and Applied Probability. Springer International Publishing Switzerland, 2014.
  20. E. Platen and N. Bruti-Liberati. Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Stochastic Modelling and Applied Probability. Springer–Verlag Berlin Heidelberg, 2010.
  21. Y. Song and X. Yang. A novel explicit two-stage Runge-Kutta method for delay differential equations with constant delay. Applied Mathematics and Computation, 272:317–322, 2015.

Summary

We haven't generated a summary for this paper yet.