Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PointGL: A Simple Global-Local Framework for Efficient Point Cloud Analysis (2401.11650v1)

Published 22 Jan 2024 in cs.CV

Abstract: Efficient analysis of point clouds holds paramount significance in real-world 3D applications. Currently, prevailing point-based models adhere to the PointNet++ methodology, which involves embedding and abstracting point features within a sequence of spatially overlapping local point sets, resulting in noticeable computational redundancy. Drawing inspiration from the streamlined paradigm of pixel embedding followed by regional pooling in Convolutional Neural Networks (CNNs), we introduce a novel, uncomplicated yet potent architecture known as PointGL, crafted to facilitate efficient point cloud analysis. PointGL employs a hierarchical process of feature acquisition through two recursive steps. First, the Global Point Embedding leverages straightforward residual Multilayer Perceptrons (MLPs) to effectuate feature embedding for each individual point. Second, the novel Local Graph Pooling technique characterizes point-to-point relationships and abstracts regional representations through succinct local graphs. The harmonious fusion of one-time point embedding and parameter-free graph pooling contributes to PointGL's defining attributes of minimized model complexity and heightened efficiency. Our PointGL attains state-of-the-art accuracy on the ScanObjectNN dataset while exhibiting a runtime that is more than 5 times faster and utilizing only approximately 4% of the FLOPs and 30% of the parameters compared to the recent PointMLP model. The code for PointGL is available at https://github.com/Roywangj/PointGL.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. S. Deng, Q. Dong, B. Liu, and Z. Hu, “Superpoint-guided semi-supervised semantic segmentation of 3d point clouds,” in ICRA, 2022.
  2. Y. Zhao, X. Zhang, and X. Huang, “A divide-and-merge point cloud clustering algorithm for lidar panoptic segmentation,” in ICRA, 2022.
  3. X. Chen, H. Zhao, G. Zhou, and Y.-Q. Zhang, “Pq-transformer: Jointly parsing 3d objects and layouts from point clouds,” IEEE RAL, 2022.
  4. Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang, and J. Sun, “Predicting the perceptual quality of point cloud: A 3d-to-2d projection-based exploration,” IEEE TMM, 2020.
  5. S. Qiu, S. Anwar, and N. Barnes, “Geometric back-projection network for point cloud classification,” IEEE TMM, 2021.
  6. X.-F. Han, Y.-F. Jin, H.-X. Cheng, and G.-Q. Xiao, “Dual transformer for point cloud analysis,” IEEE TMM, 2022.
  7. M. Shabbir, A. Shabbir, C. Iwendi, A. R. Javed, M. Rizwan, N. Herencsar, and J. C.-W. Lin, “Enhancing security of health information using modular encryption standard in mobile cloud computing,” IEEE Access, vol. 9, pp. 8820–8834, 2021.
  8. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” in NeurIPS, 2017.
  9. W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d point clouds,” in CVPR, 2019.
  10. M. Xu, R. Ding, H. Zhao, and X. Qi, “Paconv: Position adaptive convolution with dynamic kernel assembling on point clouds,” in CVPR, 2021.
  11. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” ACM TOG, 2019.
  12. M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu, “Pct: Point cloud transformer,” Computational Visual Media, 2021.
  13. H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,” in ICCV, 2021.
  14. X. Ma, C. Qin, H. You, H. Ran, and Y. Fu, “Rethinking network design and local geometry in point cloud: A simple residual mlp framework,” in ICLR, 2022.
  15. D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time object recognition,” in IROS, 2015.
  16. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep representation for volumetric shapes,” in CVPR, 2015.
  17. H. Guo, J. Wang, Y. Gao, J. Li, and H. Lu, “Multi-view 3d object retrieval with deep embedding network,” TIP, 2016.
  18. C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric and multi-view cnns for object classification on 3d data,” in CVPR, 2016.
  19. H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional neural networks for 3d shape recognition,” in ICCV, 2015.
  20. A. Saha, O. Mendez, C. Russell, and R. Bowden, “Translating images into maps,” in ICRA, 2022.
  21. L. Wiesmann, R. Marcuzzi, C. Stachniss, and J. Behley, “Retriever: Point cloud retrieval in compressed 3d maps,” in ICRA, 2022.
  22. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in CVPR, 2017.
  23. Z. Liu, H. Hu, Y. Cao, Z. Zhang, and X. Tong, “A closer look at local aggregation operators in point cloud analysis,” in ECCV, 2020.
  24. M. Meraz, M. A. Ansari, M. Javed, and P. Chakraborty, “Dc-gnn: drop channel graph neural network for object classification and part segmentation in the point cloud,” International Journal of Multimedia Information Retrieval, vol. 11, no. 2, pp. 123–133, 2022.
  25. H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas, “Kpconv: Flexible and deformable convolution for point clouds,” in ICCV, 2019.
  26. G. Qian, Y. Li, H. Peng, J. Mai, H. Hammoud, M. Elhoseiny, and B. Ghanem, “Pointnext: Revisiting pointnet++ with improved training and scaling strategies,” NeurIPs, 2022.
  27. Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “Spidercnn: Deep learning on point sets with parameterized convolutional filters,” in ECCV, 2018.
  28. Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution on x-transformed points,” NeurIPS, 2018.
  29. Z.-H. Lin, S. Y. Huang, and Y.-C. F. Wang, “Learning of 3d graph convolution networks for point cloud analysis,” IEEE TPAMI, 2021.
  30. H. Ran, W. Zhuo, J. Liu, and L. Lu, “Learning inner-group relations on point clouds,” in ICCV, 2021.
  31. D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and perturbations,” arXiv preprint arXiv:1903.12261, 2019.
  32. B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet classifiers generalize to imagenet?” in ICML, 2019.
  33. A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J. Tenenbaum, and B. Katz, “Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models,” NeurIPs, 2019.
  34. J. Ren, L. Pan, and Z. Liu, “Benchmarking and analyzing point cloud classification under corruptions,” arXiv preprint arXiv:2202.03377, 2022.
  35. Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional neural network for point cloud analysis,” in CVPR, 2019.
  36. J. Wang, J. Li, L. Ding, Y. Wang, and T. Xu, “Papooling: Graph-based position adaptive aggregation of local geometry in point clouds,” arXiv preprint arXiv:2111.14067, 2021.
  37. G. Qian, H. Hammoud, G. Li, A. Thabet, and B. Ghanem, “Assanet: An anisotropic separable set abstraction for efficient point cloud representation learning,” in NeurIPS, 2021.
  38. X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “Pointasnl: Robust point clouds processing using nonlocal neural networks with adaptive sampling,” in CVPR, 2020.
  39. A. Hamdi, S. Giancola, and B. Ghanem, “Mvtn: Multi-view transformation network for 3d shape recognition,” in ICCV, 2021.
  40. T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai, “Walk in the cloud: Learning curves for point clouds shape analysis,” in ICCV, 2021.
  41. H. Ran, J. Liu, and C. Wang, “Surface representation for point clouds,” in CVPR, 2022.
  42. M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, “Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data,” in ICCV, 2019.
  43. I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv preprint arXiv:1608.03983, 2016.
  44. M. Xu, J. Zhang, Z. Zhou, M. Xu, X. Qi, and Y. Qiao, “Learning geometry-disentangled representation for complementary understanding of 3d object point cloud,” in AAAI, 2021.
  45. Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detection,” Sensors, 2018.
  46. A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for object detection from point clouds,” in CVPR, 2019.
  47. S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to parts: 3d object detection from point cloud with part-aware and part-aggregation network,” IEEE TPAMI, 2020.
  48. S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and detection from point cloud,” in CVPR, 2019.
  49. S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn: Point-voxel feature set abstraction for 3d object detection,” in CVPR, 2020.
  50. L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang, A. Sheffer, and L. Guibas, “A scalable active framework for region annotation in 3d shape collections,” ACM TOG, 2016.
  51. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  52. I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in CVPR, 2016.
  53. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International Journal of Robotics Research, 2013.
  54. A. Goyal, H. Law, B. Liu, A. Newell, and J. Deng, “Revisiting point cloud shape classification with a simple and effective baseline,” in ICML, 2021.
  55. J. Ren, L. Kong, L. Pan, and Z. Liu, “Pointcloud-c: Benchmarking and analyzing point cloud perception robustness under corruptions,” preprint, 2022.
  56. H. Wang, Q. Liu, X. Yue, J. Lasenby, and M. J. Kusner, “Unsupervised point cloud pre-training via occlusion completion,” in ICCV, 2021.
  57. X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, and J. Lu, “Point-bert: Pre-training 3d point cloud transformers with masked point modeling,” in CVPR, 2022.
  58. Y. Pang, W. Wang, F. E. Tay, W. Liu, Y. Tian, and L. Yuan, “Masked autoencoders for point cloud self-supervised learning,” in ECCV, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jianan Li (88 papers)
  2. Jie Wang (480 papers)
  3. Tingfa Xu (42 papers)
Citations (3)