Deterministic Multistage Constellation Reconfiguration Using Integer Programming and Sequential Decision-Making Methods (2401.11567v3)
Abstract: In this paper, we address the problem of reconfiguring Earth observation satellite constellation systems through multiple stages. The Multi-stage Constellation Reconfiguration Problem (MCRP) aims to maximize the total observation rewards obtained by covering a set of targets of interest through the active manipulation of the orbits and relative phasing of constituent satellites. In this paper, we consider deterministic problem settings in which the targets of interest are known a priori. We propose a novel integer linear programming formulation for MCRP, capable of obtaining provably optimal solutions. To overcome computational intractability due to the combinatorial explosion in solving large-scale instances, we introduce two computationally efficient sequential decision-making methods based on the principles of a myopic policy and a rolling horizon procedure. The computational experiments demonstrate that the devised sequential decision-making approaches yield high-quality solutions with improved computational efficiency over the baseline MCRP. Finally, a case study using Hurricane Harvey data showcases the advantages of multi-stage constellation reconfiguration over single-stage and no-reconfiguration scenarios.
- Chen, G., Wang, Q., and Chu, X., “Accelerated spread of Fukushima’s waste water by ocean circulation,” The Innovation, Vol. 2, 2021, p. 100119. 10.1016/j.xinn.2021.100119.
- Irrgang, C., Saynisch, J., and Thomas, M., “Estimating global ocean heat content from tidal magnetic satellite observations,” Scientific Reports, Vol. 9, No. 1, 2019. 10.1038/s41598-019-44397-8.
- Rogier de Jong, M. S., Sytze de Bruin, and Dent, D., “Quantitative mapping of global land degradation using Earth observations,” International Journal of Remote Sensing, Vol. 32, No. 21, 2011, pp. 6823–6853. 10.1080/01431161.2010.512946.
- Guo, H., “Understanding global natural disasters and the role of earth observation,” International Journal of Digital Earth, Vol. 3, No. 3, 2010, pp. 221–230. 10.1080/17538947.2010.499662.
- Politi, E., Paterson, S. K., Scarrott, R., Tuohy, E., O’Mahony, C., and Cámaro-García, W. C., “Earth observation applications for coastal sustainability: potential and challenges for implementation,” Crafting Options, Approaches, and Solutions Towards Sustainability (COASTS) for Coastal Regions of the World, Vol. 1, No. 1, 2020, pp. 306–329. 10.1139/anc-2018-0015.
- Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R., and Logan, J. A., “Interannual and seasonal variability of biomass burning emissions constrained by satellite observations,” Journal of Geophysical Research: Atmospheres, Vol. 108, No. D2, 2003, pp. ACH 1–1–ACH 1–22. https://doi.org/10.1029/2002JD002378.
- Srivastava, P., Piles, M., and Pearson, S., “Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management,” Sustainability, Vol. 10, 2018, p. 181. 10.3390/su10010181.
- van der Meer, F. D., van der Werff, H. M., van Ruitenbeek, F. J., Hecker, C. A., Bakker, W. H., Noomen, M. F., van der Meijde, M., Carranza, E. J. M., de Smeth, J. B., and Woldai, T., “Multi- and hyperspectral geologic remote sensing: A review,” International Journal of Applied Earth Observation and Geoinformation, Vol. 14, No. 1, 2012, pp. 112–128. https://doi.org/10.1016/j.jag.2011.08.002.
- Sogno, P., Traidl-Hoffmann, C., and Kuenzer, C., “Earth Observation Data Supporting Non-Communicable Disease Research: A Review,” Remote Sensing, Vol. 12, 2020, p. 34. 10.3390/rs12162541.
- Hansen, M. C., and Loveland, T. R., “A review of large area monitoring of land cover change using Landsat data,” Remote Sensing of Environment, Vol. 122, 2012, pp. 66–74. https://doi.org/10.1016/j.rse.2011.08.024, landsat Legacy Special Issue.
- Kelly, A. C., Loverro, A., Case, W. F., Quéruel, N., Maréchal, C., and Barroso, T., “Small Earth observing satellites flying with large satellites in the A-train,” Small Satellite Missions for Earth Observation, 2009, p. 19–28. 10.1007/978-3-642-03501-2_2.
- Gierach, M. M., and Subrahmanyam, B., “Satellite Data Analysis of the Upper Ocean Response to Hurricanes Katrina and Rita (2005) in the Gulf of Mexico,” IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 2007, pp. 132–136. 10.1109/LGRS.2006.887145.
- Stephens, P., Cooksley, J., Da Silva Curiel, A., Boland, L., Jason, S., Northham, J., Brewer, A., Anzalchi, J., Newell, H., Underwood, C., Machin, S., Sun, W., and Sweeting, S., “Launch of the international Disaster Monitoring Constellation; the development of a novel international partnership in space,” International Conference on Recent Advances in Space Technologies (RAST), 2003, pp. 525 – 535. 10.1109/RAST.2003.1303972.
- de Weck, O. L., Scialom, U., and Siddiqi, A., “Optimal reconfiguration of satellite constellations with the auction algorithm,” Acta Astronautica, Vol. 62, No. 2, 2008, pp. 112–130. 10.1016/j.actaastro.2007.02.008.
- He, X., Li, H., Yang, L., and Zhao, J., “Reconfigurable Satellite Constellation Design for Disaster Monitoring Using Physical Programming,” International Journal of Aerospace Engineering, Vol. 2020, 2020, p. 8813685. 10.1155/2020/8813685.
- Xiaoyu, Z., Bai, X., Xu, M., Li, M., Zhou, J., Yu, L., and Zhang, J., “Satellite Constellation Reconfiguration Using Surrogate-Based Optimization,” Journal of Aerospace Engineering, Vol. 35, 2022. 10.1061/(ASCE)AS.1943-5525.0001438.
- Lee, H., and Ho, K., “Regional Constellation Reconfiguration Problem: Integer Linear Programming Formulation and Lagrangian Heuristic Method,” Journal of Spacecraft and Rockets, Vol. 60, No. 6, 2023, pp. 1828–1845. 10.2514/1.A35685.
- Chen, Y., Mahalec, V., Chen, Y., Liu, X., He, R., and Sun, K., “Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution,” European Journal of Operational Research, Vol. 242, No. 1, 2015, pp. 10–20. 10.1016/j.ejor.2014.09.025.
- Paek, S. W., Kim, S., and de Weck, O., “Optimization of Reconfigurable Satellite Constellations Using Simulated Annealing and Genetic Algorithm,” Sensors, Vol. 19, No. 4, 2019. 10.3390/s19040765.
- Appel, L., Guelman, M., and Mishne, D., “Optimization of satellite constellation reconfiguration maneuvers,” Acta Astronautica, Vol. 99, 2014, p. 166–174. 10.1016/j.actaastro.2014.02.016.
- Ferringer, M. P., Spencer, D. B., and Reed, P., “Many-objective reconfiguration of operational satellite constellations with the Large-Cluster Epsilon Non-dominated Sorting Genetic Algorithm-II,” 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 340–349. 10.1109/CEC.2009.4982967.
- Morgan, S. J., McGrath, C. N., and de Weck, O. L., “Optimization of multispacecraft maneuvers for mobile target tracking from low Earth orbit,” Journal of Spacecraft and Rockets, Vol. 60, No. 2, 2023, p. 581–590. 10.2514/1.a35457.
- McGrath, C. N., and Macdonald, M., “General Perturbation Method for Satellite Constellation Reconfiguration Using Low-Thrust Maneuvers,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 8, 2019, pp. 1676–1692. 10.2514/1.G003739.
- Jiaxin, H., Leping, Y., Huan, H., and Yanwei, Z., “Optimal reconfiguration of constellation using adaptive innovation driven multiobjective evolutionary algorithm,” Journal of Systems Engineering and Electronics, Vol. 32, 2021, pp. 1527–1538. 10.23919/JSEE.2021.000128.
- Lee, H., and Ho, K., “Binary Integer Linear Programming Formulation for Optimal Satellite Constellation Reconfiguration,” AAS/AIAA Astrodynamics Specialist Conference, 2020.
- Lee, H., and Ho, K., “A Lagrangian Relaxation-Based Heuristic Approach to Regional Constellation Reconfiguration Problem,” AAS/AIAA Astrodynamics Specialist Conference, 2021.
- Denis, G., de Boissezon, H., Hosford, S., Pasco, X., Montfort, B., and Ranera, F., “The evolution of Earth Observation satellites in Europe and its impact on the performance of emergency response services,” Acta Astronautica, Vol. 127, 2016, pp. 619–633. 10.1016/j.actaastro.2016.06.012.
- Voigt, S., Giulio-Tonolo, F., Lyons, J., Kučera, J., Jones, B., Schneiderhan, T., Platzeck, G., Kaku, K., Hazarika, M. K., Czaran, L., Li, S., Pedersen, W., James, G. K., Proy, C., Muthike, D. M., Bequignon, J., and Guha-Sapir, D., “Global trends in satellite-based emergency mapping,” Science, Vol. 353, No. 6296, 2016, pp. 247–252. 10.1126/science.aad8728.
- Lee, H., Shimizu, S., Yoshikawa, S., and Ho, K., “Satellite Constellation Pattern Optimization for Complex Regional Coverage,” Journal of Spacecraft and Rockets, Vol. 57, No. 6, 2020, pp. 1309–1327. 10.2514/1.A34657.
- Williams Rogers, D. O., Kim, S.-W., Lee, M., Kim, Y.-H., and Lee, H., “Designing Optimal Satellite Constellation Patterns with Facility Location Problem Models and Mixed Integer Linear Programming,” ASCEND, 2023. 10.2514/6.2023-4658.
- Powell, W. B., “What you should know about approximate dynamic programming,” Naval Research Logistics (NRL), Vol. 56, No. 3, 2009, pp. 239–249. 10.1002/nav.20347.
- Sethi, S., and Sorger, G., “A theory of rolling horizon decision making,” Annals of Operations Research, Vol. 29, No. 1, 1991, pp. 387–415. 10.1007/BF02283607.
- Megiddo, N., Zemel, E., and Hakimi, S. L., “The Maximum Coverage Location Problem,” SIAM Journal on Algebraic Discrete Methods, Vol. 4, No. 2, 1983, pp. 253–261. 10.1137/0604028.
- NOAA National Weather Service, “Major Hurricane Harvey,” , 2017. URL https://www.weather.gov/crp/hurricane_harvey, last Accessed January 17, 2024.
- NOAA’s National Centers for Environmental Information, The National Hurricane Center, “Costliest U.S. Tropical Cyclones,” , 12 2023. URL https://www.ncei.noaa.gov/access/billions/dcmi.pdf, last Accessed January 17, 2024.
- NASA Earth Observatory, “Hurricane Harvey Stirs Up the Gulf of Mexico,” , 2017. URL https://earthobservatory.nasa.gov/images/90818/hurricane-harvey-stirs-up-the-gulf-of-mexico, last Accessed January 17, 2024.
- Blake, E. S., and Zelinsky, D. A., “National Hurricane Center Tropical Cyclone Report Hurricane Harvey (AL092017) 17 August 2017 - 1 September 2017,” National Hurricane Center, 2018.
- Li, S., Goldberg, M., Kalluri, S., Lindsey, D. T., Sjoberg, B., Zhou, L., Helfrich, S., Green, D., Borges, D., Yang, T., and Sun, D., “High Resolution 3D Mapping of Hurricane Flooding from Moderate-Resolution Operational Satellites,” Remote Sensing, Vol. 14, No. 21, 2022. 10.3390/rs14215445.
- Brown, S., Focardi, P., Kitiyakara, A., Maiwald, F., Milligan, L., Montes, O., Padmanabhan, S., Redick, R., Russel, D., Bach, V., and Walkemeyer, P., “The COWVR Mission: Demonstrating the capability of a new generation of small satellite weather sensors,” 2017 IEEE Aerospace Conference, 2017, pp. 1–7. 10.1109/AERO.2017.7943884.
- 10.1109/IGARSS.2018.8517330.
- Wilson, T. M., Angal, A., and Xiong, X., “Sensor Performance Assessment for Terra and Aqua Modis using unscheduled lunar observations,” Sensors, Systems, and Next-Generation Satellites XXII, 2018. 10.1117/12.2324873.
- National Oceanic and Atmospheric Administration, “Glossary of NHC Terms,” , 2009. URL https://www.nhc.noaa.gov/aboutgloss.shtml, last Accessed January 17, 2024.