Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MobileARLoc: On-device Robust Absolute Localisation for Pervasive Markerless Mobile AR (2401.11511v3)

Published 21 Jan 2024 in cs.CV

Abstract: Recent years have seen significant improvement in absolute camera pose estimation, paving the way for pervasive markerless Augmented Reality (AR). However, accurate absolute pose estimation techniques are computation- and storage-heavy, requiring computation offloading. As such, AR systems rely on visual-inertial odometry (VIO) to track the device's relative pose between requests to the server. However, VIO suffers from drift, requiring frequent absolute repositioning. This paper introduces MobileARLoc, a new framework for on-device large-scale markerless mobile AR that combines an absolute pose regressor (APR) with a local VIO tracking system. Absolute pose regressors (APRs) provide fast on-device pose estimation at the cost of reduced accuracy. To address APR accuracy and reduce VIO drift, MobileARLoc creates a feedback loop where VIO pose estimations refine the APR predictions. The VIO system identifies reliable predictions of APR, which are then used to compensate for the VIO drift. We comprehensively evaluate MobileARLoc through dataset simulations. MobileARLoc halves the error compared to the underlying APR and achieve fast (80\,ms) on-device inference speed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler, “D2-net: A trainable cnn for joint description and detection of local features,” in ieee/cvf conference on computer vision and pattern recognition, 2019, pp. 8092–8101.
  2. P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse to fine: Robust hierarchical localization at large scale,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
  3. H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic, T. Pajdla, and A. Torii, “Inloc: Indoor visual localization with dense matching and view synthesis,” in IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7199–7209.
  4. H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-scale image retrieval with attentive deep local features,” in IEEE international conference on computer vision, 2017, pp. 3456–3465.
  5. A. Moreau, T. Gilles, N. Piasco, D. Tsishkou, B. Stanciulescu, and A. de La Fortelle, “Imposing: Implicit pose encoding for efficient visual localization,” in IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 2892–2902.
  6. T. Braud, Z. Pengyuan, J. Kangasharju, and H. Pan, “Multipath computation offloading for mobile augmented reality,” in 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom).   IEEE, 2020, pp. 1–10.
  7. C. B. Fernandez, T. Braud, and P. Hui, “Implementing gdpr for mobile and ubiquitous computing,” in 23rd Annual International Workshop on Mobile Computing Systems and Applications, 2022.
  8. Y. Shavit, R. Ferens, and Y. Keller, “Learning multi-scene absolute pose regression with transformers,” in IEEE/CVF International Conference on Computer Vision, 2021, pp. 2733–2742.
  9. T. Sattler, Q. Zhou, M. Pollefeys, and L. Leal-Taixe, “Understanding the limitations of cnn-based absolute camera pose regression,” in IEEE/CVF conference on computer vision and pattern recognition, 2019.
  10. T. Scargill, G. Premsankar, J. Chen, and M. Gorlatova, “Here to stay: A quantitative comparison of virtual object stability in markerless mobile ar,” in 2022 2nd International Workshop on Cyber-Physical-Human System Design and Implementation (CPHS).   IEEE, 2022, pp. 24–29.
  11. S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz, “Geometry-aware learning of maps for camera localization,” in IEEE conference on computer vision and pattern recognition, 2018.
  12. A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof camera relocalization,” in IEEE international conference on computer vision, 2015.
  13. A. Kendall and R. Cipolla, “Geometric loss functions for camera pose regression with deep learning,” in IEEE conference on computer vision and pattern recognition, 2017, pp. 5974–5983.
  14. S. Chen, X. Li, Z. Wang, and V. A. Prisacariu, “Dfnet: Enhance absolute pose regression with direct feature matching,” in ECCV 2022. Tel Aviv, Israel, October 23–27, 2022, Part X.   Springer, 2022.
  15. A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning for camera relocalization,” in 2016 IEEE international conference on Robotics and Automation (ICRA).   IEEE, 2016.
  16. Z. Huang, Y. Xu, J. Shi, X. Zhou, H. Bao, and G. Zhang, “Prior guided dropout for robust visual localization in dynamic environments,” in IEEE/CVF international conference on computer vision, 2019.
  17. A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, and A. de La Fortelle, “Coordinet: uncertainty-aware pose regressor for reliable vehicle localization,” in IEEE/CVF Winter Conference on Applications of Computer Vision, 2022.
  18. M. Bui, T. Birdal, H. Deng, S. Albarqouni, L. Guibas, S. Ilic, and N. Navab, “6d camera relocalization in ambiguous scenes via continuous multimodal inference,” in ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Part XVIII 16.   Springer, 2020.
  19. F. Zangeneh, L. Bruns, A. Dekel, A. Pieropan, and P. Jensfelt, “A probabilistic framework for visual localization in ambiguous scenes,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 3969–3975.
  20. C. Gramkow, “On averaging rotations,” Journal of Mathematical Imaging and Vision, vol. 15, no. 1-2, pp. 7–16, 2001.
  21. J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in IEEE conference on computer vision and pattern recognition, 2016.
  22. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  23. T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic et al., “Benchmarking 6dof outdoor visual localization in changing conditions,” in IEEE conference on computer vision and pattern recognition, 2018.
Citations (2)

Summary

We haven't generated a summary for this paper yet.