Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Considerations for Developing Deep Space Autonomous Spacecraft and Simulators (2401.11371v1)

Published 21 Jan 2024 in cs.RO, cs.SY, and eess.SY

Abstract: To extend the limited scope of autonomy used in prior missions for operation in distant and complex environments, there is a need to further develop and mature autonomy that jointly reasons over multiple subsystems, which we term system-level autonomy. System-level autonomy establishes situational awareness that resolves conflicting information across subsystems, which may necessitate the refinement and interconnection of the underlying spacecraft and environment onboard models. However, with a limited understanding of the assumptions and tradeoffs of modeling to arbitrary extents, designing onboard models to support system-level capabilities presents a significant challenge. In this paper, we provide a detailed analysis of the increasing levels of model fidelity for several key spacecraft subsystems, with the goal of informing future spacecraft functional- and system-level autonomy algorithms and the physics-based simulators on which they are validated. We do not argue for the adoption of a particular fidelity class of models but, instead, highlight the potential tradeoffs and opportunities associated with the use of models for onboard autonomy and in physics-based simulators at various fidelity levels. We ground our analysis in the context of deep space exploration of small bodies, an emerging frontier for autonomous spacecraft operation in space, where the choice of models employed onboard the spacecraft may determine mission success. We conduct our experiments in the Multi-Spacecraft Concept and Autonomy Tool (MuSCAT), a software suite for developing spacecraft autonomy algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. T. W. Fong, J. D. Frank, J. M. Badger, I. A. Nesnas, and M. S. Feary, “Autonomous systems taxonomy,” in Autonomous Systems CLT Meeting, no. ARC-E-DAA-TN56290, 2018.
  2. I. A. Nesnas, L. M. Fesq, and R. A. Volpe, “Autonomy for space robots: Past, present, and future,” Current Robotics Reports, vol. 2, no. 3, pp. 251–263, 2021.
  3. K. O. Kolcio, “Model-based fault detection and isolation system for increased autonomy,” in AIAA SPACE 2016, 2016, p. 5225.
  4. M. S. Feather, S. L. Cornford, J. Dunphy, and K. Hicks, “A quantitative risk model for early lifecycle decision making,” in 6th World Conference on Integrated Design & Process Technology, Pasadena, CA, June 2002.
  5. J. Riedel, S. Bhaskaran, S. Desai, D. Han, B. Kennedy, T. McElrath, G. Null, M. Ryne, S. Synnott, T. Wang et al., “Using autonomous navigation for interplanetary missions: The validation of deep space 1 autonav,” 2000.
  6. D. G. Kubitschek, N. Mastrodemos, R. A. Werner, B. M. Kennedy, S. P. Synnott, G. W. Null, S. Bhaskaran, J. E. Riedel, and A. T. Vaughan, “Deep impact autonomous navigation: the trials of targeting the unknown,” 2006.
  7. N. Ogawa, F. Terui, Y. Mimasu, K. Yoshikawa, G. Ono, S. Yasuda, K. Matsushima, T. Masuda, H. Hihara, J. Sano et al., “Image-based autonomous navigation of hayabusa2 using artificial landmarks: The design and brief in-flight results of the first landing on asteroid ryugu,” Astrodynamics, vol. 4, pp. 89–103, 2020.
  8. C. Norman, C. Miller, R. Olds, C. Mario, E. Palmer, O. Barnouin, M. Daly, J. Weirich, J. Seabrook, C. Bennett et al., “Autonomous navigation performance using natural feature tracking during the osiris-rex touch-and-go sample collection event,” The Planetary Science Journal, vol. 3, no. 5, p. 101, 2022.
  9. B. T. Tropf, M. Haque, N. Behrooz, and C. Krupiarz, “The DART autonomy system,” in 2023 IEEE 9th International Conference on Space Mission Challenges for Information Technology (SMC-IT).   IEEE, 2023, pp. 104–113.
  10. A. Nelessen, C. Sackier, I. Clark, P. Brugarolas, G. Villar, A. Chen, A. Stehura, R. Otero, E. Stilley, D. Way et al., “Mars 2020 entry, descent, and landing system overview,” in 2019 IEEE Aerospace Conference.   IEEE, 2019, pp. 1–20.
  11. R. Sherwood, S. Chien, D. Tran, B. Cichy, R. Castano, A. Davies, and G. Rabideau, “Operating the autonomous sciencecraft experiment,” in Space OPS 2004 Conference, 2004, p. 81.
  12. L. Fesq, P. Beauchamp, C. Altenbuchner, R. Bocchino, A. Donner, M. Feather, K. Hughes, B. Kennedy, R. Mackey, F. Mirza et al., “Results from the ASTERIA cubesat extended mission experiments,” in IEEE Aerospace Conference.   IEEE, 2021, pp. 1–11.
  13. S. Evans, W. Taber, T. Drain, J. Smith, H.-C. Wu, M. Guevara, R. Sunseri, and J. Evans, “Monte: the next generation of mission design and navigation software,” CEAS Space Journal, vol. 10, pp. 79–86, 2018.
  14. M. J. Welch and T. Panczak, “Automating thermal analysis with thermal desktop™,” SAE Technical Paper, Tech. Rep., 1999.
  15. E. G. Wood, G. W. Chang, and F. C. Chen, “Multi-mission power analysis tool (mmpat) version 3,” Tech. Rep., 2012.
  16. GNURadio. URL: https://www.gnuradio.org/ [cited January 21, 2024].
  17. A. Jain. The DARTS Simulation Laboratory. URL: https://www-robotics.jpl.nasa.gov/how-we-do-it/facilities/the-darts-simulation-laboratory/ [cited January 21, 2024].
  18. Modelon: Design better with cloud-based simulation. URL: https://modelon.com/ [cited January 21, 2024].
  19. NVIDIA Omniverse. URL: https://www.nvidia.com/en-us/omniverse/ [cited January 21, 2024].
  20. Ansys STK: Software for Digital Mission Engineering and Systems Analysis. URL: https://www.ansys.com/products/missions/ansys-stk [cited January 21, 2024].
  21. GAZEBO: Simulate before you build. URL: https://gazebosim.org/home [cited January 21, 2024].
  22. H. Schaub. Welcome to Basilisk: an Astrodynamics Simulation Framework. URL: https://hanspeterschaub.info/basilisk/ [cited January 21, 2024].
  23. M. W. McElwain, L. D. Feinberg, M. D. Perrin, M. Clampin, C. M. Mountain, M. D. Lallo, C.-P. Lajoie, R. A. Kimble, C. W. Bowers, C. C. Stark et al., “The james webb space telescope mission: Optical telescope element design, development, and performance,” Publications of the Astronomical Society of the Pacific, vol. 135, no. 1047, p. 058001, 2023.
  24. S. Papais, B. J. Hockman, S. Bandyopadhyay, R. R. Karimi, S. Bhaskaran, and I. A. Nesnas, “Architecture trades for accessing small bodies with an autonomous small spacecraft,” in 2020 IEEE Aerospace Conference.   IEEE, 2020, pp. 1–20.
  25. X. Chen, M. E. Kenyon, W. R. Johnson, J. Blacksberg, D. W. Wilson, C. A. Raymond, and B. L. Ehlmann, “Mid-and long-wave infrared point spectrometer (mlps): a miniature space-borne science instrument,” Optics Express, vol. 30, no. 10, pp. 17 476–17 489, 2022.
  26. J. Hong, R. P. Binzel, B. Allen, D. Guevel, J. Grindlay, D. Hoak, R. Masterson, M. Chodas, M. Lambert, C. Thayer et al., “Calibration and performance of the regolith x-ray imaging spectrometer (rexis) aboard nasa’s osiris-rex mission to bennu,” Space Science Reviews, vol. 217, pp. 1–30, 2021.
  27. S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, “Nonlinear attitude control of spacecraft with a large captured object,” Journal of Guidance, Control, and Dynamics, vol. 39, no. 4, pp. 754–769, 2016.
  28. D. Izzo, “Revisiting lambert’s problem,” Celestial Mechanics and Dynamical Astronomy, vol. 121, pp. 1–15, 2015.
  29. M. Troesch, F. Mirza, K. Hughes, A. Rothstein-Dowden, A. Donner, R. Bocchino, M. Feather, B. Smith, L. Fesq, B. Barker et al., “Mexec: An onboard integrated planning and execution approach for spacecraft commanding,” 2020.
  30. K. Djebko, F. Puppe, and H. Kayal, “Model-based fault detection and diagnosis for spacecraft with an application for the sonate triple cube nano-satellite,” Aerospace, vol. 6, no. 10, p. 105, 2019.
  31. G. Rabideau, S. P. Joy, C. A. Polanskey, and S. Chien, “A data management tool for dawn science planning,” in SpaceOps 2014 Conference, 2014, p. 1917.
  32. C. M. Katzan, D. J. Brinker, and R. Kress, “The effects of lunar dust accumulation on the performance of photovoltaic arrays,” in Space photovoltaic research and technology conference, no. E-6264, 1991.
  33. X. Wang, P. Yin, Y. Xia, L. Yang, and H. Zhang, “Research on occlusion of satellite solar array based on collision detection method,” in 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2019, pp. 1997–2001.
  34. J. R. Wertz, D. F. Everett, and J. J. Puschell, “Space mission engineering: the new smad,” (No Title), 2011.
  35. Y. Zhang, S. Gao, and T. Gu, “Prediction of iv characteristics for a pv panel by combining single diode model and explicit analytical model,” Solar energy, vol. 144, pp. 349–355, 2017.
  36. T. Khatib, A. Ghareeb, M. Tamimi, M. Jaber, and S. Jaradat, “A new offline method for extracting iv characteristic curve for photovoltaic modules using artificial neural networks,” Solar Energy, vol. 173, pp. 462–469, 2018.
  37. T. Meade, D. O’Sullivan, R. Foley, C. Achimescu, M. Egan, and P. McCloskey, “Parasitic inductance effect on switching losses for a high frequency dc-dc converter,” in 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition.   IEEE, 2008, pp. 3–9.
  38. M. Murnane and A. Ghazel, “A closer look at state of charge (soc) and state of health (soh) estimation techniques for batteries,” Analog devices, vol. 2, pp. 426–436, 2017.
  39. K. Movassagh, A. Raihan, B. Balasingam, and K. Pattipati, “A critical look at coulomb counting approach for state of charge estimation in batteries,” Energies, vol. 14, no. 14, p. 4074, 2021.
  40. G. Ning and B. N. Popov, “Cycle life modeling of lithium-ion batteries,” Journal of The Electrochemical Society, vol. 151, no. 10, p. A1584, 2004.
  41. L. Su, M. Wu, Z. Li, and J. Zhang, “Cycle life prediction of lithium-ion batteries based on data-driven methods,” ETransportation, vol. 10, p. 100137, 2021.
  42. M. O. Tarar, I. H. Naqvi, Z. Khalid, and M. Pecht, “Accurate prediction of remaining useful life for lithium-ion battery using deep neural networks with memory features,” Frontiers in Energy Research, vol. 11, p. 1059701, 2023.
  43. J. de la Vega, J.-R. Riba, and J. A. Ortega-Redondo, “Mathematical modeling of battery degradation based on direct measurements and signal processing methods,” Applied Sciences, vol. 13, no. 8, p. 4938, 2023.
  44. J. Lu, R. Xiong, J. Tian, C. Wang, C.-W. Hsu, N.-T. Tsou, F. Sun, and J. Li, “Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning,” Energy Storage Materials, vol. 50, pp. 139–151, 2022.
  45. M. Parhizi, M. Pathak, and A. Jain, “Analytical model based prediction of state-of-charge (soc) of a lithium-ion cell under time-varying charge/discharge currents,” Journal of The Electrochemical Society, vol. 167, no. 12, p. 120544, 2020.
  46. E. Chemali, P. J. Kollmeyer, M. Preindl, and A. Emadi, “State-of-charge estimation of li-ion batteries using deep neural networks: A machine learning approach,” Journal of Power Sources, vol. 400, pp. 242–255, 2018.
  47. M.-F. Ng, J. Zhao, Q. Yan, G. J. Conduit, and Z. W. Seh, “Predicting the state of charge and health of batteries using data-driven machine learning,” Nature Machine Intelligence, vol. 2, no. 3, pp. 161–170, 2020.
  48. D. S. Bayard, “High-precision three-axis pointing and control,” in Encyclopedia of Aerospace Engineering.   John Wiley & Sons, Ltd, 2010. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470686652.eae300
  49. Y. I. Somov, S. A. Butyrin, and S. Y. Somov, “Spacecraft guidance and robust attitude control with precise pointing the flexible antennas,” in 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), 2009, pp. 1057–1062.
  50. A. Ponche, A. Marcos, T. Ott, R. Geshnizjani, and J. Loehr, “Guidance for autonomous spacecraft repointing under attitude constraints and actuator limitations,” Acta Astronautica, vol. 207, pp. 340–352, 2023.
  51. J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear attitude estimation methods,” Journal of guidance, control, and dynamics, vol. 30, no. 1, pp. 12–28, 2007.
  52. Y. Yang and Z. Zhou, “Attitude estimation: with or without spacecraft dynamics?” Advances in aircraft and spacecraft science, vol. 4, no. 3, p. 335, 2017.
  53. J. L. Crassidis and F. L. Markley, “Three-axis attitude estimation using rate-integrating gyroscopes,” Journal of Guidance, Control, and Dynamics, vol. 39, no. 7, pp. 1513–1526, 2016.
  54. D. R. Herber, J. W. McDonald, O. S. Alvarez-Salazar, G. Krishnan, and J. T. Allison, “Reducing spacecraft jitter during satellite reorientation maneuvers via solar array dynamics,” in 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2014, p. 3278.
  55. J. Deyst, “A survey of structural flexibility effects on spacecraft control systems,” in 7th Aerospace Sciences Meeting, 1969, p. 116.
  56. B. Wie and C. T. Plescia, “Attitude stabilization of flexible spacecraft during stationkeeping maneuvers,” Journal of Guidance, Control, and Dynamics, vol. 7, no. 4, pp. 430–436, 1984.
  57. J. Wei, D. Cao, L. Wang, H. Huang, and W. Huang, “Dynamic modeling and simulation for flexible spacecraft with flexible jointed solar panels,” International Journal of Mechanical Sciences, vol. 130, pp. 558–570, 2017.
  58. A. Colagrossi and M. Lavagna, “A spacecraft attitude determination and control algorithm for solar arrays pointing leveraging sun angle and angular rates measurements,” Algorithms, vol. 15, no. 2, p. 29, 2022.
  59. T. Ishida and M. Takahashi, “Attitude determination of planetary exploration rovers using solar panels characteristics and accelerometer,” Acta Astronautica, vol. 105, no. 1, pp. 344–354, 2014.
  60. A. Porras-Hermoso, J. Cubas, and S. Pindado, “Use of spacecraft solar panels and sun sensors for estimation of the sun-pointing direction in the upmsat-2 mission,” Measurement, vol. 204, p. 112061, 2022.
  61. Y. Yang, “Spacecraft attitude and reaction wheel desaturation combined control method,” IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 1, pp. 286–295, 2017.
  62. A. Farres, C. Webster, and D. Folta, “High fidelity modeling of srp and its effect on the relative motion of starshade and wfirst,” in 2018 Space Flight Mechanics Meeting, 2018, p. 2227.
  63. E. Herrera-Sucarrat, P. Palmer, and R. Roberts, “Modeling the gravitational potential of a nonspherical asteroid,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 3, pp. 790–798, 2013.
  64. R. S. Park, R. A. Werner, and S. Bhaskaran, “Estimating small-body gravity field from shape model and navigation data,” Journal of guidance, control, and dynamics, vol. 33, no. 1, pp. 212–221, 2010.
  65. I. Jean, A. Ng, and A. K. Misra, “Impact of solar radiation pressure modeling on orbital dynamics in the vicinity of binary asteroids,” Acta Astronautica, vol. 165, pp. 167–183, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0094576519312524
  66. M. Ziebart and P. Dare, “Analytical solar radiation pressure modelling for glonass using a pixel array,” Journal of Geodesy, vol. 75, pp. 587–599, 2001.
  67. S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear systems,” in Signal processing, sensor fusion, and target recognition VI, vol. 3068.   Spie, 1997, pp. 182–193.
  68. E. M. Keil, “Kalman filter implementation to determine orbit and attitude of a satellite in a molniya orbit,” Ph.D. dissertation, Virginia Tech, 2014.
  69. I. A. Nesnas, B. J. Hockman, S. Bandopadhyay, B. J. Morrell, D. P. Lubey, J. Villa, D. S. Bayard, A. Osmundson, B. Jarvis, M. Bersani et al., “Autonomous exploration of small bodies toward greater autonomy for deep space missions,” Frontiers in Robotics and AI, vol. 8, p. 650885, 2021.
  70. V. U. Nwankwo, W. Denig, S. K. Chakrabarti, M. P. Ajakaiye, J. Fatokun, A. W. Akanni, J.-P. Raulin, E. Correia, J. E. Enoh, and P. I. Anekwe, “Atmospheric drag effects on modelled low earth orbit (leo) satellites during the july 2000 bastille day event in contrast to an interval of geomagnetically quiet conditions,” in Annales Geophysicae, vol. 39, no. 3.   Copernicus Publications Göttingen, Germany, 2021, pp. 397–412.
  71. V. A. Shuvalov, N. B. Gorev, N. A. Tokmak, and Y. P. Kuchugurnyi, “Drag on a spacecraft produced by the interaction of its magnetic field with the earth’s ionosphere. physical modelling,” Acta Astronautica, vol. 166, pp. 41–51, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0094576519313244
  72. E. Stiefel and D. Bettis, “Stabilization of cowell’s method,” Numerische Mathematik, vol. 13, pp. 154–175, 1969.
  73. W. M. Owen Jr, “Methods of optical navigation,” Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA, Tech. Rep., 2011.
  74. S. Bhaskaran, S. Desai, P. Dumont, B. Kennedy, G. Null, W. Owen Jr, J. Riedel, S. Synnott, and R. Werner, “Orbit determination performance evaluation of the Deep Space 1 autonomous navigation system,” in AAS/AIAA Spaceflight Mechanics Meeting, Monterey, CA, Feb. 1998.
  75. P.-T. Chen, J. L. Speyer, D. S. Bayard, and W. A. Majid, “Autonomous navigation using X-ray Pulsars and multirate processing,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 9, pp. 2237–2249, 2017.
  76. M. Xue, Y. Shi, Y. Guo, N. Huang, D. Peng, J. Luo, H. Shentu, and Z. Chen, “X-ray pulsar-based navigation considering spacecraft orbital motion and systematic biases,” Sensors, vol. 19, no. 8, p. 1877, 2019.
  77. A. Malgarini, V. Franzese, and F. Topputo, “Application of pulsar-based navigation for deep-space cubesats,” Aerospace, vol. 10, no. 8, p. 695, 2023.
  78. J. Day, R. Rasmussen, and I. A. Nesnas, “Principles for architecting autonomous systems,” 2022.
  79. N. Dhamani, M. D. Johnston, and G. Lucena, “A demand access paradigm for nasa’s deep space network,” 2021.
  80. K.-M. Cheung, “End-to-end space system: Engineering considerations,” in A Roadmap to Future Space Connectivity: Satellite and Interplanetary Networks, C. Sacchi, F. Granelli, R. Bassoli, F. H. P. Fitzek, and M. Ruggieri, Eds.   Cham: Springer International Publishing, 2023, pp. 139–169. [Online]. Available: https://doi.org/10.1007/978-3-031-30762-1_6
  81. ISO/IEC, “7498-1:1994 information technology — open systems interconnection — basic reference model: The basic model,” Introduction, June 1999, retrieved 26 August 2022.
  82. F. Pollara and L. Ekroot, “Analysis of automatic repeat request methods for deep-space downlinks,” The Telecommunications and Data Acquisition Report, 1995.
  83. A. Sastry, “Improving automatic repeat-request (arq) performance on satellite channels under high error rate conditions,” IEEE Transactions on Communications, vol. 23, no. 4, pp. 436–439, 1975.
Citations (1)

Summary

We haven't generated a summary for this paper yet.