Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Triple-Refined Hybrid-Field Beam Training for mmWave Extremely Large-Scale MIMO (2401.11195v1)

Published 20 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: This paper investigates beam training for extremely large-scale multiple-input multiple-output systems. By considering both the near field and far field, a triple-refined hybrid-field beam training scheme is proposed, where high-accuracy estimates of channel parameters are obtained through three steps of progressive beam refinement. First, the hybrid-field beam gain (HFBG)-based first refinement method is developed. Based on the analysis of the HFBG, the first-refinement codebook is designed and the beam training is performed accordingly to narrow down the potential region of the channel path. Then, the maximum likelihood (ML)-based and principle of stationary phase (PSP)-based second refinement methods are developed. By exploiting the measurements of the beam training, the ML is used to estimate the channel parameters. To avoid the high computational complexity of ML, closed-form estimates of the channel parameters are derived according to the PSP. Moreover, the Gaussian approximation (GA)-based third refinement method is developed. The hybrid-field neighboring search is first performed to identify the potential region of the main lobe of the channel steering vector. Afterwards, by applying the GA, a least-squares estimator is developed to obtain the high-accuracy channel parameter estimation. Simulation results verify the effectiveness of the proposed scheme.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. K. Chen, C. Qi, and O. A. Dobre, “Beam refinement for THz extremely large-scale MIMO systems based on Gaussian approximation,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), accepted, Kuala Lumpur, Malaysia, Dec. 2023, pp. 1–6.
  2. E. Bjornson, L. Van der Perre, S. Buzzi, and E. G. Larsson, “Massive MIMO in sub-6 GHz and mmWave: Physical, practical, and use-case differences,” IEEE Wireless Commun., vol. 26, no. 2, pp. 100–108, Apr. 2019.
  3. M. Chen, J. Guo, C.-K. Wen, S. Jin, G. Y. Li, and A. Yang, “Deep learning-based implicit CSI feedback in massive MIMO,” IEEE Trans. Commun., vol. 70, no. 2, pp. 935–950, Feb. 2022.
  4. Z. Qiu, S. Zhou, M. Zhao, and W. Zhou, “Low-complexity precoding by exploiting spatial sparsity in massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 4740–4753, Dec. 2022.
  5. C. Qi, P. Dong, W. Ma, H. Zhang, Z. Zhang, and G. Y. Li, “Acquisition of channel state information for mmWave massive MIMO: Traditional and machine learning-based approaches,” Sci. China Inf. Sci., vol. 64, no. 8, p. 181301, Aug. 2021.
  6. M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, Feb. 2023.
  7. M. Cui and L. Dai, “Channel estimation for extremely large-scale MIMO: Far-field or near-field?” IEEE Trans. Commun., vol. 70, no. 4, pp. 2663–2677, Jan. 2022.
  8. Y. Lu and L. Dai, “Near-field channel estimation in mixed LoS/NLoS environments for extremely large-scale MIMO systems,” IEEE Trans. Commun., vol. 71, no. 6, pp. 3694–3707, June 2023.
  9. K. T. Selvan and R. Janaswamy, “Fraunhofer and Fresnel distances: Unified derivation for aperture antennas.” IEEE Antennas Propag. Mag., vol. 59, no. 4, pp. 12–15, Aug. 2017.
  10. H. Lu and Y. Zeng, “Communicating with extremely large-scale array/surface: Unified modeling and performance analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4039–4053, June 2022.
  11. Z. Chen, B. Ning, C. Han, Z. Tian, and S. Li, “Intelligent reflecting surface assisted Terahertz communications toward 6G,” IEEE Wireless Commun., vol. 28, no. 6, pp. 110–117, Dec. 2021.
  12. B. Ning et al., “Beamforming technologies for ultra-massive MIMO in terahertz communications,” IEEE Open J. Commun. Society, vol. 4, pp. 614–658, Feb. 2023.
  13. B. Ning, Z. Chen, Z. Tian, C. Han, and S. Li, “A unified 3D beam training and tracking procedure for terahertz communication,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2445–2461, Apr. 2022.
  14. X. Sun, C. Qi, and G. Y. Li, “Beam training and allocation for multiuser millimeter wave massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1041–1053, Feb. 2019.
  15. C. Liu, M. Li, S. V. Hanly, I. B. Collings, and P. Whiting, “Millimeter wave beam alignment: Large deviations analysis and design insights,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1619–1631, July 2017.
  16. J. Wang et al., “Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1390–1399, Oct. 2009.
  17. Z. Xiao, H. Dong, L. Bai, P. Xia, and X. Xia, “Enhanced channel estimation and codebook design for millimeter-wave communication,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9393–9405, Oct. 2018.
  18. C. Qi, K. Chen, O. A. Dobre, and G. Y. Li, “Hierarchical codebook-based multiuser beam training for millimeter wave massive MIMO,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 8142–8152, Sep. 2020.
  19. B. Ning, Z. Chen, W. Chen, Y. Du, and J. Fang, “Terahertz multi-user massive MIMO with intelligent reflecting surface: Beam training and hybrid beamforming,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1376–1393, Feb. 2021.
  20. B. Ning, T. Wang, C. Huang, Y. Zhang, and Z. Chen, “Wide-beam designs for Terahertz massive MIMO: SCA-ATP and S-SARV,” IEEE Internet Things J., no. 12, pp. 10 857–10 869, June 2023.
  21. M. Li, C. Liu, S. V. Hanly, I. B. Collings, and P. Whiting, “Explore and eliminate: Optimized two-stage search for millimeter-wave beam alignment,” IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4379–4393, Sep. 2019.
  22. S.-E. Chiu, N. Ronquillo, and T. Javidi, “Active learning and CSI acquisition for mmWave initial alignment,” IEEE J. Sel. Areas Commun., vol. 37, no. 11, pp. 2474–2489, Nov. 2019.
  23. D. Zhu, J. Choi, and R. W. Heath, “Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4770–4785, July 2017.
  24. J. A. Zhang, K. Wu, X. Huang, and Y. J. Guo, “Beam alignment for analog arrays based on Gaussian approximation,” IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 8152–8157, June 2023.
  25. K. Chen, C. Qi, and C.-X. Wang, “Two-stage hybrid-field beam training for ultra-massive MIMO systems,” in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Foshan, China, Aug. 2022, pp. 1074–1079.
  26. Y. Zhang, X. Wu, and C. You, “Fast near-field beam training for extremely large-scale array,” IEEE Wireless Commun. Lett., vol. 11, no. 12, pp. 2625–2629, Dec. 2022.
  27. X. Shi, J. Wang, Z. Sun, and J. Song, “Spatial-chirp codebook-based hierarchical beam training for extremely large-scale massive MIMO,” IEEE Trans. Wireless Commun., early access, pp. 1–15, 2023.
  28. X. Wei, L. Dai, Y. Zhao, G. Yu, and X. Duan, “Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?” China Commun, vol. 19, no. 6, pp. 193–204, June 2022.
  29. C. Wu, C. You, Y. Liu, L. Chen, and S. Shi, “Two-stage hierarchical beam training for near-field communications,” IEEE Trans. Veh. Technol., early access, pp. 1–13, 2023.
  30. G. Jiang and C. Qi, “Near-field beam training based on deep learning for extremely large-scale MIMO,” IEEE Commun. Lett., vol. 27, no. 8, pp. 2063–2067, Aug. 2023.
  31. W. Liu, H. Ren, C. Pan, and J. Wang, “Deep learning based beam training for extremely large-scale massive MIMO in near-field domain,” IEEE Commun. Lett., vol. 27, no. 1, pp. 170–174, Jan. 2023.
  32. W. Liu, C. Pan, H. Ren, F. Shu, S. Jin, and J. Wang, “Low-overhead beam training scheme for extremely large-scale RIS in near field,” IEEE Trans. Commun., vol. 71, no. 8, pp. 4924–4940, Aug. 2023.
  33. J. Liang and D. Liu, “Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm,” IEEE Trans. Signal Process., vol. 58, no. 1, pp. 108–120, Jan. 2010.
  34. Z. Wang, X. Mu, and Y. Liu, “Near-field integrated sensing and communications,” IEEE Commun. Lett., vol. 27, no. 8, pp. 2048–2052, Aug. 2023.
  35. B. Friedlander, “Localization of signals in the near-field of an antenna array,” IEEE Trans. Signal Process., vol. 67, no. 15, pp. 3885–3893, Aug. 2019.
  36. K. Chen, C. Qi, C.-X. Wang, and G. Y. Li, “Beam training and tracking for extremely large-scale MIMO communications,” IEEE Trans. Wireless Commun., early access, pp. 1–15, 2023.
  37. K. Chen, C. Qi, and G. Y. Li, “Two-step codeword design for millimeter wave massive MIMO systems with quantized phase shifters,” IEEE Trans. Signal Process., vol. 68, pp. 170–180, Dec. 2019.
  38. J. Zhang, Y. Huang, Q. Shi, J. Wang, and L. Yang, “Codebook design for beam alignment in millimeter wave communication systems,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4980–4995, Nov. 2017.
  39. K. Chen and C. Qi, “Beam training based on dynamic hierarchical codebook for millimeter wave massive MIMO,” IEEE Commun. Lett., vol. 23, no. 1, pp. 132–135, Jan. 2019.
  40. K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt., vol. 21, no. 14, p. 2470, July 1982.
  41. G. Buttazzoni and R. Vescovo, “Density tapering of linear arrays radiating pencil beams: A new extremely fast Gaussian approach,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7372–7377, Dec. 2017.
  42. K. Lo, “Theoretical analysis of the sequential lobing technique,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 1, pp. 282–293, Jan. 1999.
  43. T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear minimization subject to bounds,” SIAM J. Optim., vol. 6, no. 2, pp. 418–445, 1996.
  44. H. Guo, “A simple algorithm for fitting a Gaussian function [DSP Tips and Tricks],” IEEE Signal Process. Mag., vol. 28, no. 5, pp. 134–137, Sep. 2011.
  45. K. Wu, J. A. Zhang, and Y. J. Guo, “Fast and accurate linear fitting for an incompletely sampled Gaussian function with a long tail [DSP Tips and Tricks],” IEEE Signal Process. Mag., vol. 39, no. 6, pp. 76–84, Nov. 2022.
  46. Z. Wu and L. Dai, “Multiple access for near-field communications: SDMA or LDMA?” IEEE J. Sel. Areas Commun., vol. 41, no. 6, pp. 1918–1935, June 2023.
  47. I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, “Terahertz band communication: An old problem revisited and research directions for the next decade,” IEEE Trans. Commun., vol. 70, no. 6, pp. 4250–4285, June 2022.
  48. A. Shafie, N. Yang, C. Han, J. M. Jornet, M. Juntti, and T. Kürner, “Terahertz communications for 6G and beyond wireless networks: Challenges, key advancements, and opportunities,” IEEE Netw., vol. 37, no. 3, pp. 162–169, May 2023.
  49. J. Tan and L. Dai, “THz precoding for 6G: Challenges, solutions, and opportunities,” IEEE Wireless Commun., vol. 30, no. 4, pp. 132–138, Aug. 2023.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com