Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wideband Beamforming for RIS Assisted Near-Field Communications (2401.11141v3)

Published 20 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: A near-field wideband beamforming scheme is investigated for reconfigurable intelligent surface (RIS) assisted multiple-input multiple-output (MIMO) systems, in which a deep learning-based end-to-end (E2E) optimization framework is proposed to maximize the system spectral efficiency. To deal with the near-field double beam split effect, the base station is equipped with frequency-dependent hybrid precoding architecture by introducing sub-connected true time delay (TTD) units, while two specific RIS architectures, namely true time delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are exploited to realize the frequency-dependent passive beamforming at the RIS. Furthermore, the efficient E2E beamforming models without explicit channel state information are proposed, which jointly exploits the uplink channel training module and the downlink wideband beamforming module. In the proposed network architecture of the E2E models, the classical communication signal processing methods, i.e., polarized filtering and sparsity transform, are leveraged to develop a signal-guided beamforming network. Numerical results show that the proposed E2E models have superior beamforming performance and robustness to conventional beamforming benchmarks. Furthermore, the tradeoff between the beamforming gain and the hardware complexity is investigated for different frequency-dependent RIS architectures, in which the TTD-RIS can achieve better spectral efficiency than the SA-RIS while requiring additional energy consumption and hardware cost.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, Nov. 2020.
  2. M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, Jan. 2023.
  3. X. Mu, J. Xu, Y. Liu, and L. Hanzo, “Reconfigurable intelligent surface-aided near-field communications for 6G: Opportunities and challenges,” IEEE Veh. Technol. Mag., Jan. 2024.
  4. Y. Liu, Z. Wang, J. Xu, C. Ouyang, X. Mu, and R. Schober, “Near-field communications: A tutorial review,” IEEE Open J. Commun. Soc., vol. 4, pp. 1999–2049, Aug. 2023.
  5. Z. Wang, X. Mu, and Y. Liu, “Near-field integrated sensing and communications,” IEEE Commun. Lett., vol. 27, no. 8, pp. 2048–2052, Aug. 2023.
  6. L. Dai, J. Tan, Z. Chen, and H. V. Poor, “Delay-phase precoding for wideband THz massive MIMO,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7271–7286, Sep. 2022.
  7. R. Su, L. Dai, and D. W. Ng, “Wideband precoding for RIS-aided THz communications,” IEEE Trans. Commun., vol. 71, no. 6, pp. 3592–3604, Jun. 2023.
  8. W. Yan, W. Hao, C. Huang, G. Sun, O. Muta, H. Gacanin, and C. Yuen, “Beamforming analysis and design for wideband THz reconfigurable intelligent surface communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2306–2320, Aug. 2023.
  9. W. Hao, F. Zhou, M. Zeng, O. A. Dobre, and N. Al-Dhahir, “Ultra wideband THz IRS communications: Applications, challenges, key techniques, and research opportunities,” IEEE Network, vol. 36, no. 6, pp. 214–220, Dec. 2022.
  10. H. Sun, S. Zhang, J. Ma, and O. A. Dobre, “Time-delay unit based beam squint mitigation for RIS-aided communications,” IEEE Commun. Lett., vol. 26, no. 9, pp. 2220–2224, Sep. 2022.
  11. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3083–3098, May 2022.
  12. Z. Wang, X. Mu, J. Xu, and Y. Liu, “Simultaneously transmitting and reflecting surface (STARS) for Terahertz communications,” IEEE J. Sel. Top. Signal Process., vol. 17, no. 4, pp. 861–877, Jul. 2023.
  13. W. Hao, X. You, F. Zhou, Z. Chu, G. Sun, and P. Xiao, “The far-/near-field beam squint and solutions for THz intelligent reflecting surface communications,” IEEE Trans. Veh. Technol., vol. 72, no. 8, pp. 10 107–10 118, Aug. 2023.
  14. J. An, C. Xu, D. W. K. Ng, C. Yuen, L. Gan, and L. Hanzo, “Reconfigurable intelligent surface-enhanced OFDM communications via delay adjustable metasurface,” arXiv preprint arXiv:2110.09291, 2021.
  15. Y. Cheng, C. Huang, W. Peng, M. Debbah, L. Hanzo, and C. Yuen, “Achievable rate optimization of the RIS-aided near-field wideband uplink,” IEEE Trans. Wireless Commun., 2023.
  16. J. D. Kraus and R. J. Marhefka, “Antennas for all applications,” Antennas for all applications, 2002.
  17. E. Basar, I. Yildirim, and F. Kilinc, “Indoor and outdoor physical channel modeling and efficient positioning for reconfigurable intelligent surfaces in mmWave bands,” IEEE Trans. Wireless Commun., vol. 69, no. 12, pp. 8600–8611, Dec. 2021.
  18. S. Tarboush, H. Sarieddeen, H. Chen, M. H. Loukil, H. Jemaa, M.-S. Alouini, and T. Y. Al-Naffouri, “TeraMIMO: A channel simulator for wideband ultra-massive MIMO Terahertz communications,” IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 12 325–12 341, Dec. 2021.
  19. B. Zheng, C. You, W. Mei, and R. Zhang, “A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 1035–1071, Secondquarter 2022.
  20. J. Xiao, J. Wang, Z. Wang, W. Xie, and Y. Liu, “Multi-scale attention based channel estimation for RIS-aided massive MIMO systems,” IEEE Trans. Wireless Commun., pp. 1–1, 2023.
  21. T. L. Jensen and E. De Carvalho, “An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, pp. 5000–5004.
  22. M. Wu, Z. Gao, Y. Huang, Z. Xiao, D. W. K. Ng, and Z. Zhang, “Deep learning-based rate-splitting multiple access for reconfigurable intelligent surface-aided Terahertz massive MIMO,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1431–1451, May 2023.
  23. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  24. Z. Liu, L. Zhang, and Z. Ding, “Overcoming the channel estimation barrier in massive MIMO communication via deep learning,” IEEE Wireless Commun., vol. 27, no. 5, pp. 104–111, Oct. 2020.
  25. H. Liu, F. Liu, X. Fan, and D. Huang, “Polarized self-attention: Towards high-quality pixel-wise regression,” arXiv preprint arXiv:2107.00782, 2021.
  26. Z. Gao, M. Wu, C. Hu, F. Gao, G. Wen, D. Zheng, and J. Zhang, “Data-driven deep learning based hybrid beamforming for aerial massive MIMO-OFDM systems with implicit CSI,” IEEE J. Sel. Areas Commun., vol. 40, no. 10, pp. 2894–2913, Oct. 2022.
  27. Y. Rao, W. Zhao, Z. Zhu, J. Lu, and J. Zhou, “Global filter networks for image classification,” Advances in Neural Information Processing Systems, vol. 34, 2021.
  28. I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit et al., “MLP-Mixer: An all-MLP architecture for vision,” Advances in neural information processing systems, vol. 34, pp. 24 261–24 272, 2021.
  29. N. S. Perović, L.-N. Tran, M. Di Renzo, and M. F. Flanagan, “Achievable rate optimization for MIMO systems with reconfigurable intelligent surfaces,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3865–3882, Jun. 2021.
  30. H. Wang, J. Fang, and H. Li, “Joint beamforming and channel reconfiguration for RIS-assisted millimeter wave massive MIMO-OFDM systems,” IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 7627–7638, Jun. 2023.
  31. G. T. de Araújo, A. L. F. de Almeida, and R. Boyer, “Channel estimation for intelligent reflecting surface assisted MIMO systems: A tensor modeling approach,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 3, pp. 789–802, Apr. 2021.
  32. L. Wei, C. Huang, G. C. Alexandropoulos, C. Yuen, Z. Zhang, and M. Debbah, “Channel estimation for RIS-empowered multi-user MISO wireless communications,” IEEE Trans. Commun., vol. 69, no. 6, pp. 4144–4157, Jun. 2021.
  33. J. Xiao, J. Wang, Z. Chen, and G. Huang, “U-MLP-based hybrid-field channel estimation for XL-RIS assisted millimeter-wave MIMO systems,” IEEE Wireless Commun. Lett., vol. 12, no. 6, pp. 1042–1046, Jun. 2023.
  34. X. Wei, C. Hu, and L. Dai, “Deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems,” IEEE Trans. Commun., vol. 69, no. 1, pp. 182–193, Jan. 2021.
Citations (7)

Summary

We haven't generated a summary for this paper yet.