Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing (2401.10623v3)

Published 19 Jan 2024 in quant-ph, cs.SY, and eess.SY

Abstract: Quantum computing (QC) and ML, taken individually or combined into quantum-assisted ML (QML), are ascending computing paradigms whose calculations come with huge potential for speedup, increase in precision, and resource reductions. Likely improvements for numerical simulations in engineering imply the possibility of a strong economic impact on the manufacturing industry. In this project report, we propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing, consisting of various layers ranging from hardware to algorithms to service and organizational layers. In addition, we give insight into the current state of the art of applications research based on QC and QML, both from a scientific and an industrial point of view. We further analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. DOI 10.1088/1367-2630/aad1ea. URL https://dx.doi.org/10.1088/1367-2630/aad1ea
  2. URL https://en.acatech.de/publication/the-innovation-potential-of-second-generation-quantum-technologies/
  3. DOI 10.1103/RevModPhys.92.015003. URL https://link.aps.org/doi/10.1103/RevModPhys.92.015003
  4. DOI 10.1103/PhysRevA.93.032324. URL https://link.aps.org/doi/10.1103/PhysRevA.93.032324
  5. DOI 10.1038/nature23474. URL https://doi.org/10.1038/nature23474
  6. DOI 10.1080/00107514.2014.964942. URL https://doi.org/10.1080/00107514.2014.964942
  7. DOI 10.22331/q-2018-08-06-79. URL https://doi.org/10.22331/q-2018-08-06-79
  8. DOI 10.1103/RevModPhys.86.153. URL https://link.aps.org/doi/10.1103/RevModPhys.86.153
  9. DOI 10.1103/PhysRevLett.83.5162. URL https://link.aps.org/doi/10.1103/PhysRevLett.83.5162
  10. DOI 10.1137/S0097539795293172. URL https://doi.org/10.1137/S0097539795293172
  11. DOI 10.1103/PhysRevLett.103.150502. URL https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
  12. DOI 10.48550/arXiv.2310.03011
  13. DOI 10.1126/science.273.5278.1073. URL https://www.science.org/doi/abs/10.1126/science.273.5278.1073
  14. DOI 10.1145/780542.780546. URL https://doi.org/10.1145/780542.780546
  15. DOI 10.1007/s00220-006-0150-x. URL https://doi.org/10.1007/s00220-006-0150-x
  16. DOI 10.1007/s00220-009-0930-1. URL https://doi.org/10.1007/s00220-009-0930-1
  17. DOI 10.1103/PhysRevLett.118.010501. URL https://link.aps.org/doi/10.1103/PhysRevLett.118.010501
  18. DOI 10.22331/q-2019-07-12-163. URL https://doi.org/10.22331/q-2019-07-12-163
  19. DOI 10.1145/3313276.3316366. URL https://doi.org/10.1145/3313276.3316366
  20. DOI 10.48550/arXiv.2302.14324
  21. DOI 10.1103/PRXQuantum.2.040203. URL https://link.aps.org/doi/10.1103/PRXQuantum.2.040203
  22. DOI 10.1145/3313276.3316310. URL https://doi.org/10.1145/3313276.3316310
  23. DOI 10.1145/3357713.3384314. URL https://doi.org/10.1145/3357713.3384314
  24. DOI 10.48550/arXiv.1811.04909
  25. DOI 10.1103/PhysRevLett.127.060503. URL https://link.aps.org/doi/10.1103/PhysRevLett.127.060503
  26. DOI 10.48550/arXiv.2303.01492
  27. DOI 10.1145/3519935.3519991. URL https://doi.org/10.1145/3519935.3519991
  28. DOI 10.48550/arXiv.2303.13012
  29. DOI 10.1103/PhysRevLett.110.250504. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.250504
  30. DOI 10.1007/s00220-017-3002-y. URL https://doi.org/10.1007/s00220-017-3002-y
  31. DOI 10.1007/s00220-020-03699-z. URL https://doi.org/10.1007/s00220-020-03699-z
  32. DOI 10.22331/q-2021-11-10-574. URL https://doi.org/10.22331/q-2021-11-10-574
  33. DOI 10.1073/pnas.2026805118
  34. DOI 10.48550/arXiv.1111.4144. URL http://arxiv.org/abs/1111.4144. ArXiv:1111.4144 [cs]
  35. URL https://books.google.de/books?id=8ofqngEACAAJ
  36. K. Huebner, The Finite Element Method for Engineers. Wiley-Interscience publication (Wiley, 1975). URL https://books.google.de/books?id=pRkZAQAAIAAJ
  37. DOI 10.17973/MMSJ.2021˙11˙2021168
  38. DOI 10.3389/fmtec.2022.1021029. URL https://www.frontiersin.org/articles/10.3389/fmtec.2022.1021029
  39. DOI 10.1016/j.procir.2014.03.023
  40. DOI 10.1007/s00170-019-03585-6
  41. DOI 10.1016/j.cirp.2012.03.144
  42. DOI 10.3390/app10248779
  43. DOI 10.3390/jmmp4030078
  44. DOI 10.1016/j.cirp.2010.03.057
  45. DOI 10.1016/j.procir.2020.03.092
  46. S. Maslo, Aachen: Apprimus Verlag 1st ed. (2022)
  47. DOI 10.1038/s42254-021-00314-5. URL https://doi.org/10.1038/s42254-021-00314-5
  48. DOI 10.1038/s41586-019-0980-2. URL https://doi.org/10.1038/s41586-019-0980-2
  49. DOI 10.1038/s41534-023-00710-y. URL https://doi.org/10.1038/s41534-023-00710-y
  50. URL https://arxiv.org/abs/2010.03409
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (17)
  1. Wolfgang Maass (30 papers)
  2. Ankit Agrawal (47 papers)
  3. Alessandro Ciani (17 papers)
  4. Sven Danz (6 papers)
  5. Alejandro Delgadillo (1 paper)
  6. Philipp Ganser (2 papers)
  7. Pascal Kienast (3 papers)
  8. Marco Kulig (1 paper)
  9. Valentina König (1 paper)
  10. Nil Rodellas-Gràcia (1 paper)
  11. Rivan Rughubar (1 paper)
  12. Stefan Schröder (12 papers)
  13. Marc Stautner (1 paper)
  14. Hannah Stein (1 paper)
  15. Tobias Stollenwerk (23 papers)
  16. Daniel Zeuch (7 papers)
  17. Frank K. Wilhelm (77 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com