Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Room Geometry Inference from Multichannel Room Impulse Response using Deep Neural Network (2401.10453v1)

Published 19 Jan 2024 in eess.AS and cs.SD

Abstract: Room geometry inference (RGI) aims at estimating room shapes from measured room impulse responses (RIRs) and has received lots of attention for its importance in environment-aware audio rendering and virtual acoustic representation of a real venue. A lot of estimation models utilizing time difference of arrival (TDoA) or time of arrival (ToA) information in RIRs have been proposed. However, an estimation model should be able to handle more general features and complex relations between reflections to cope with various room shapes and uncertainties such as the unknown number of walls. In this study, we propose a deep neural network that can estimate various room shapes without prior assumptions on the shape or number of walls. The proposed model consists of three sub-networks: a feature extractor, parameter estimation, and evaluation networks, which extract key features from RIRs, estimate parameters, and evaluate the confidence of estimated parameters, respectively. The network is trained by about 40,000 RIRs simulated in rooms of different shapes using a single source and spherical microphone array and tested for rooms of unseen shapes and dimensions. The proposed algorithm achieves almost perfect accuracy in finding the true number of walls and shows negligible errors in room shapes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com