Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bypassing a Reactive Jammer via NOMA-Based Transmissions in Critical Missions (2401.10387v2)

Published 18 Jan 2024 in cs.CR and cs.NI

Abstract: Wireless networks can be vulnerable to radio jamming attacks. The quality of service under a jamming attack is not guaranteed and the service requirements such as reliability, latency, and effective rate, specifically in mission-critical military applications, can be deeply affected by the jammer's actions. This paper analyzes the effect of a reactive jammer. Particularly, reliability, average transmission delay, and the effective sum rate (ESR) for a NOMA-based scheme with finite blocklength transmissions are mathematically derived taking the detection probability of the jammer into account. Furthermore, the effect of UEs' allocated power and blocklength on the network metrics is explored. Contrary to the existing literature, results show that gNB can mitigate the impact of reactive jamming by decreasing transmit power, making the transmissions covert at the jammer side. Finally, an optimization problem is formulated to maximize the ESR under reliability, delay, and transmit power constraints. It is shown that by adjusting the allocated transmit power to UEs by gNB, the gNB can bypass the jammer effect to fulfill the 0.99999 reliability and the latency of 5ms without the need for packet re-transmission.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. S. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-domain non-orthogonal multiple access (noma) in 5g systems: Potentials and challenges,” IEEE COMST, vol. 19/2, pp. 721–742, 2016.
  2. U. Ghafoor, M. Ali, H. Z. Khan, A. M. Siddiqui, and M. Naeem, “Noma and future 5g & b5g wireless networks: A paradigm,” Journal of Network and Computer Applications, vol. 204, p. 103413, 2022.
  3. W. U. Khan, J. Liu, F. Jameel, V. Sharma, R. Jäntti, and Z. Han, “Spectral efficiency optimization for next generation noma-enabled iot networks,” IEEE Trans on Vehicular Tech., vol. 69/12, pp. 15 284–15 297, 2020.
  4. S. Althunibat, H. Hassan, T. Khattab, and N. Zorba, “A new NOMA-based two-way relaying scheme,” IEEE Transactions on Vehicular Technology, vol. 72, no. 9, pp. 12 300–12 310, 2023.
  5. A. Akbar, S. Jangsher, and F. A. Bhatti, “Noma and 5g emerging technologies: A survey on issues and solution techniques,” Computer Networks, vol. 190, p. 107950, 2021.
  6. Y. Arjoune and S. Faruque, “Smart jamming attacks in 5g new radio: A review,” in IEEE Annual Computing and Comm. Workshop & conf., 2020, pp. 1010–1015.
  7. S. Vadlamani, B. Eksioglu, H. Medal, and A. Nandi, “Jamming attacks on wireless networks: A taxonomic survey,” International Journal of Production Economics, vol. 172, pp. 76–94, 2016.
  8. L. Xiao, Y. Li, C. Dai, H. Dai, and H. V. Poor, “Reinforcement learning-based noma power allocation in the presence of smart jamming,” IEEE Trans on Vehicular Tech., vol. 67/4, pp. 3377–3389, 2017.
  9. H. Wang, Y. Fu, R. Song, Z. Shi, and X. Sun, “Power minimization precoding in uplink multi-antenna noma systems with jamming,” IEEE Trans on Green Communications and Netw., vol. 3/3, pp. 591–602, 2019.
  10. J. Li and M. Fan, “Jamming suppression in downlink noma using independent component analysis,” in Int Conf on Comm. Tech, 2019, pp. 164–168.
  11. J. Farah, J. Akiki, and E. P. Simon, “Energy-efficient techniques for combating the influence of reactive jamming using non-orthogonal multiple access and distributed antenna systems,” in 2019 Wireless Telecommunications Symposium (WTS).   IEEE, 2019, pp. 1–7.
  12. J. Farah, E. P. Simon, P. Laly, and G. Delbarre, “Efficient combinations of noma with distributed antenna systems based on channel measurements for mitigating jamming attacks,” IEEE Systems Journal, vol. 15, no. 2, pp. 2212–2221, 2020.
  13. A. Tabeshnezhad, A. L. Swindlehurst, and T. Svensson, “Ris-assisted interference mitigation for uplink noma,” in IEEE Wireless Communications and Networking Conference.   IEEE, 2023, pp. 1–5.
  14. H. Pirayesh and H. Zeng, “Jamming attacks and anti-jamming strategies in wireless networks: A comprehensive survey,” IEEE COMST, vol. 24, no. 2, pp. 767–809, 2022.
  15. X. Chen, J. An, Z. Xiong, C. Xing, N. Zhao, F. R. Yu, and A. Nallanathan, “Covert communications: A comprehensive survey,” IEEE Communications Surv. & Tutorials, vol. 25, no. 2, pp. 1173–1198, 2023.
  16. Y.-C. Liang, Y. Zeng, E. C. Peh, and A. T. Hoang, “Sensing-throughput tradeoff for cognitive radio networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 4, pp. 1326–1337, 2008.
  17. M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja, C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li, S. Johnson, and B. Vucetic, “Short block-length codes for ultra-reliable low latency communications,” IEEE Communications Magazine, vol. 57, no. 2, pp. 130–137, 2019.
  18. H. Lee and Y.-C. Ko, “Physical layer enhancements for ultra-reliable low-latency communications in 5g new radio systems,” IEEE Communications Standards Magazine, vol. 5, no. 4, pp. 112–122, 2021.
  19. Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, May 2010.
  20. 3GPP TR 36.859 V0.1.0, “3GPP; technical specification group radio access network; study on downlink multiuser superposition transmission (MUST) for LTE,” 2015. [Online]. Available: www.portal.3gpp.org
  21. M. Iwabuchi, A. Benjebbour, Y. Kishiyama, G. Ren, C. Tang, T. Tian, L. Gu, T. Takada, and T. Kashima, “5g field experimental trials on urllc using new frame structure,” in IEEE Globecom Workshops, 2017.
  22. T.-K. Le, U. Salim, and F. Kaltenberger, “An overview of physical layer design for ultra-reliable low-latency communications in 3gpp releases 15, 16, and 17,” IEEE Access, vol. 9, pp. 433–444, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.