Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design and development of opto-neural processors for simulation of neural networks trained in image detection for potential implementation in hybrid robotics (2401.10289v1)

Published 17 Jan 2024 in cs.ET, cs.AI, cs.LG, and cs.NE

Abstract: Neural networks have been employed for a wide range of processing applications like image processing, motor control, object detection and many others. Living neural networks offer advantages of lower power consumption, faster processing, and biological realism. Optogenetics offers high spatial and temporal control over biological neurons and presents potential in training live neural networks. This work proposes a simulated living neural network trained indirectly by backpropagating STDP based algorithms using precision activation by optogenetics achieving accuracy comparable to traditional neural network training algorithms.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com