Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Migrating Birds Optimization-Based Feature Selection for Text Classification (2401.10270v1)

Published 4 Jan 2024 in cs.NE and cs.LG

Abstract: This research introduces a novel approach, MBO-NB, that leverages Migrating Birds Optimization (MBO) coupled with Naive Bayes as an internal classifier to address feature selection challenges in text classification having large number of features. Focusing on computational efficiency, we preprocess raw data using the Information Gain algorithm, strategically reducing the feature count from an average of 62221 to 2089. Our experiments demonstrate MBO-NB's superior effectiveness in feature reduction compared to other existing techniques, emphasizing an increased classification accuracy. The successful integration of Naive Bayes within MBO presents a well-rounded solution. In individual comparisons with Particle Swarm Optimization (PSO), MBO-NB consistently outperforms by an average of 6.9% across four setups. This research offers valuable insights into enhancing feature selection methods, providing a scalable and effective solution for text classification

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com