Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Best Time for an Update: Risk-Sensitive Minimization of Age-Based Metrics (2401.10265v1)

Published 3 Jan 2024 in cs.IT, cs.LG, cs.NI, and math.IT

Abstract: Popular methods to quantify transmitted data quality are the Age of Information (AoI), the Query Age of Information (QAoI), and the Age of Incorrect Information (AoII). We consider these metrics in a point-to-point wireless communication system, where the transmitter monitors a process and sends status updates to a receiver. The challenge is to decide on the best time for an update, balancing the transmission energy and the age-based metric at the receiver. Due to the inherent risk of high age-based metric values causing complications such as unstable system states, we introduce the new concept of risky states to denote states with high age-based metric. We use this new notion of risky states to quantify and minimize this risk of experiencing high age-based metrics by directly deriving the frequency of risky states as a novel risk-metric. Building on this foundation, we introduce two risk-sensitive strategies for AoI, QAoI and AoII. The first strategy uses system knowledge, i.e., channel quality and packet arrival probability, to find an optimal strategy that transmits when the age-based metric exceeds a tunable threshold. A lower threshold leads to higher risk-sensitivity. The second strategy uses an enhanced Q-learning approach and balances the age-based metric, the transmission energy and the frequency of risky states without requiring knowledge about the system. Numerical results affirm our risk-sensitive strategies' high effectiveness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. L. Russell, R. Goubran, F. Kwamena, and F. Knoefel, “Agile IoT for critical infrastructure resilience: Cross-modal sensing as part of a situational awareness approach,” IEEE Internet Things J., vol. 5, no. 6, pp. 4454–4465, 2018.
  2. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in IEEE Int. Conf. Computer Commun. (Infocom), 2012, pp. 2731–2735.
  3. M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, “On the role of age of information in the internet of things,” IEEE Commun. Mag., vol. 57, no. 12, pp. 72–77, 2019.
  4. F. Chiariotti, J. Holm, A. E. Kalør et al., “Query age of information: Freshness in pull-based communication,” IEEE Trans. Commun., vol. 70, no. 3, pp. 1606–1622, 2022.
  5. A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of incorrect information: A new performance metric for status updates,” CoRR, vol. abs/1907.06604, 2019. [Online]. Available: http://arxiv.org/abs/1907.06604
  6. O. Ayan, M. Vilgelm, M. Klügel et al., “Age-of-information vs. value-of-information scheduling for cellular networked control systems,” CoRR, vol. abs/1903.05356, 2019. [Online]. Available: http://arxiv.org/abs/1903.05356
  7. P. M. d. S. Ana, N. Marchenko, P. Popovski, and B. Soret, “Age of loop for wireless networked control systems optimization,” 2021. [Online]. Available: https://arxiv.org/abs/2106.00415
  8. L. Hu, Z. Chen, Y. Dong et al., “Status update in IoT networks: Age-of-information violation probability and optimal update rate,” IEEE Internet Things J., vol. 8, no. 14, pp. 11 329–11 344, 2021.
  9. B. Zhou and W. Saad, “Joint status sampling and updating for minimizing age of information in the internet of things,” IEEE Trans. Commun., vol. 67, no. 11, pp. 7468–7482, 2019.
  10. Y. Wang, S. Wu, J. Jiao et al., “Age-optimal transmission policy for Markov source with differential encoding,” in IEEE Global Commun. Conf., 2020, pp. 1–6.
  11. B. Wang, S. Feng, and J. Yang, “When to preempt? Age of information minimization under link capacity constraint,” J. Commun. Networks, vol. 21, no. 3, pp. 220–232, 2019.
  12. R. Devassy, G. Durisi, G. C. Ferrante et al., “Reliable transmission of short packets through queues and noisy channels under latency and peak-age violation guarantees,” IEEE J. Sel. A. Commun., vol. 37, no. 4, pp. 721–734, 2019.
  13. M. Song, H. H. Yang, H. Shan et al., “Analysis of AoI violation probability in wireless networks,” in Int. Symp. Wireless Commun. Syst. (ISWCS), 2021, pp. 1–6.
  14. L. Hu, Z. Chen, Y. Jia et al., “Asymptotically optimal arrival rate for IoT networks with AoI and peak AoI constraints,” IEEE Commun. Lett., vol. 25, no. 12, pp. 3853–3857, 2021.
  15. B. Zhou, W. Saad, M. Bennis, and P. Popovski, “Risk-aware optimization of age of information in the internet of things,” in IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6.
  16. A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of incorrect information: A new performance metric for status updates,” IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2215–2228, 2020.
  17. Y. Chen and A. Ephremides, “Minimizing age of incorrect information for unreliable channel with power constraint,” in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6.

Summary

We haven't generated a summary for this paper yet.