Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Flexible and Bidirectional Charging in Medium- and Heavy-Duty Trucks on California's Decarbonization Pathway (2401.10194v1)

Published 18 Jan 2024 in eess.SY and cs.SY

Abstract: California has committed to ambitious decarbonization targets across multiple sectors, including decarbonizing the electrical grid by 2045. In addition, the medium- and heavy-duty truck fleets are expected to see rapid electrification over the next two decades. Considering these two pathways in tandem is critical for ensuring cost optimality and reliable power system operation. In particular, we examine the potential cost savings of electrical generation infrastructure by enabling flexible charging and bidirectional charging for these trucks. We also examine costs adjacent to enabling these services, such as charger upgrades and battery degradation. We deploy a large mixed-integer decarbonization planning model to quantify the costs associated with the electric generation decarbonization pathway. Example scenarios governing truck driving and charging behaviors are implemented to reveal the sensitivity of temporal driving patterns. Our experiments show that cost savings on the order of multiple billions of dollars are possible by enabling flexible and bidirectional charging in medium- and heavy-duty trucks in California.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. California Air Resources Board, “Advanced clean fleets regulation - drayage truck requirements.” https://ww2.arb.ca.gov/resources/fact-sheets/advanced-clean-fleets-regulation-drayage-truck-requirements, 2023.
  2. M. Wang and M. T. Craig, “The value of vehicle-to-grid in a decarbonizing California grid,” J. Power Sources, vol. 513, p. 230472, 2021.
  3. B. Bibak and H. Tekiner-Mogulkoc, “Influences of vehicle to grid (V2G) on power grid: An analysis by considering associated stochastic parameters explicitly,” Sustain. Energy, Grids Netw., vol. 26, p. 100429, 2021.
  4. X. Li, Y. Tan, X. Liu, Q. Liao, B. Sun, G. Cao, C. Li, X. Yang, and Z. Wang, “A cost-benefit analysis of V2G electric vehicles supporting peak shaving in Shanghai,” Electr. Power Syst. Res., vol. 179, p. 106058, 2020.
  5. A. Thingvad, L. Calearo, P. B. Andersen, M. Marinelli, M. Neaimeh, K. Suzuki, and K. Murai, “Value of V2G frequency regulation in Great Britain considering real driving data,” in 2019 IEEE ISGT Europe, pp. 1–5, 2019.
  6. A. W. Thompson and Y. Perez, “Vehicle-to-everything (V2X) energy services, value streams, and regulatory policy implications,” Energy Policy, vol. 137, p. 111136, 2020.
  7. P. J. Ramírez, D. Papadaskalopoulos, and G. Strbac, “Co-optimization of generation expansion planning and electric vehicles flexibility,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1609–1619, 2016.
  8. X. Yao, Y. Fan, F. Zhao, and S.-C. Ma, “Economic and climate benefits of vehicle-to-grid for low-carbon transitions of power systems: A case study of China’s 2030 renewable energy target,” J. Clean. Prod., vol. 330, p. 129833, 2022.
  9. A. Suski, T. Remy, D. Chattopadhyay, C. S. Song, I. Jaques, T. Keskes, and Y. Li, “Analyzing electric vehicle load impact on power systems: Modeling analysis and a case study for Maldives,” IEEE Access, vol. 9, pp. 125640–125657, 2021.
  10. A. Hajebrahimi, I. Kamwa, E. Delage, and M. M. A. Abdelaziz, “Adaptive distributionally robust optimization for electricity and electrified transportation planning,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 4278–4289, 2020.
  11. P. A. Gunkel, C. Bergaentzlé, I. Græsted Jensen, and F. Scheller, “From passive to active: Flexibility from electric vehicles in the context of transmission system development,” Appl. Energy, vol. 277, p. 115526, 2020.
  12. J. Donadee, R. Shaw, O. Garnett, E. Cutter, and L. Min, “Potential benefits of vehicle-to-grid technology in California: High value for capabilities beyond one-way managed charging,” IEEE Electrific. Mag., vol. 7, no. 2, pp. 40–45, 2019.
  13. L. Xu, H. Ümitcan Yilmaz, Z. Wang, W.-R. Poganietz, and P. Jochem, “Greenhouse gas emissions of electric vehicles in Europe considering different charging strategies,” Transp. Res. D, vol. 87, p. 102534, 2020.
  14. O. Anderson, N. Yu, and M. Bragin, “Optimize deep decarbonization pathways in california with power system planning using surrogate level-based lagrangian relaxation,” arXiv Preprint, 2023.
  15. Energy + Environmental Economics, “E3 RESOLVE model.” https://github.com/AaronHolm/RESOLVE, 2019.
  16. O. Anderson, N. Yu, K. Oikonomou, and D. Wu, “On the selection of intermediate length representative periods for capacity expansion,” arXiv Preprint, 2024.
  17. National Renewable Energy Laboratory, “Fleet DNA project data.” www.nrel.gov/fleetdna, 2023.
  18. B. Wang and C. Zhang, “Medium- & heavy-duty electric vehicle infrastructure load, operations and deployment tool (HEVI-LOAD).” https://www.energy.ca.gov/sites/default/files/2021-09/5%20LBNL-FTD-EAD-HEVI-LOAD%20Medium-%20and%20Heavy-Duty%20Load%20Shapes_ADA.pdf, 2021.
  19. California Energy Commission, “Statewide vehicle stock forecast and scenarios.” https://www.energy.ca.gov/data-reports/california-energy-planning-library/forecasts-and-system-planning/demand-side-modeling, 2022.
  20. B. Borlaug, M. Muratori, M. Gilleran, D. Woody, W. Muston, T. Canada, A. Ingram, H. Gresham, and C. McQueen, “Heavy-duty truck electrification and the impacts of depot charging on electricity distribution systems,” Nat. Energy, vol. 6, pp. 673 – 682, 2021.
  21. National Renewable Energy Laboratory, “BLAST-Lite.” https://www.nrel.gov/transportation/blast.html, 2023.
  22. Department of Energy, “Electric vehicle battery pack costs in 2022 are nearly 90% lower than in 2008, according to DOE estimates.” https://www.energy.gov/eere/vehicles/articles/fotw-1272-january-9-2023-electric-vehicle-battery-pack-costs-2022-are-nearly, 2023.
  23. W. J. Cole and A. Karmakar, “Cost projections for utility-scale battery storage: 2023 update,” tech. rep., National Renewable Energy Laboratory, June 2023.
  24. L. Goldie-Scot, “A behind the scenes take on lithium-ion battery prices.” https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/, 2019.
  25. V. Ramasamy, J. Zuboy, M. Woodhouse, E. O’Shaughnessy, D. Feldman, J. Desai, A. Walker, R. Margolis, and P. Basore, “U.S. solar photovoltaic system and energy storage cost benchmarks, with minimum sustainable price analysis: Q1 2023,” tech. rep., National Renewable Energy Laboratory, 2023.
  26. “Assess the battery-recharging and hydrogen-refueling infrastructure needs, costs and timelines required to support regulatory requirements for light-, medium-, and heavy-duty zero-emission vehicles,” tech. rep., Coordinating Research Council, September 2023.

Summary

We haven't generated a summary for this paper yet.