Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional Linear Non-Gaussian Acyclic Model for Causal Discovery (2401.09641v1)

Published 17 Jan 2024 in cs.LG, math.ST, q-bio.NC, stat.ME, and stat.TH

Abstract: In causal discovery, non-Gaussianity has been used to characterize the complete configuration of a Linear Non-Gaussian Acyclic Model (LiNGAM), encompassing both the causal ordering of variables and their respective connection strengths. However, LiNGAM can only deal with the finite-dimensional case. To expand this concept, we extend the notion of variables to encompass vectors and even functions, leading to the Functional Linear Non-Gaussian Acyclic Model (Func-LiNGAM). Our motivation stems from the desire to identify causal relationships in brain-effective connectivity tasks involving, for example, fMRI and EEG datasets. We demonstrate why the original LiNGAM fails to handle these inherently infinite-dimensional datasets and explain the availability of functional data analysis from both empirical and theoretical perspectives. {We establish theoretical guarantees of the identifiability of the causal relationship among non-Gaussian random vectors and even random functions in infinite-dimensional Hilbert spaces.} To address the issue of sparsity in discrete time points within intrinsic infinite-dimensional functional data, we propose optimizing the coordinates of the vectors using functional principal component analysis. Experimental results on synthetic data verify the ability of the proposed framework to identify causal relationships among multivariate functions using the observed samples. For real data, we focus on analyzing the brain connectivity patterns derived from fMRI data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. G. Darmois. Analyse generale des liaisons stochastiques. Rev. Inst. Intern. Stat, 21:2–8, 1953.
  2. I. Ebert-Uphoff and Y. Deng. Causal Discovery for Climate Research Using Graphical Models. Journal of Climate, 25(17):5648–5665, 2012.
  3. K. J. Friston. Functional and effective connectivity: A review. Brain Connectivity, 1(1):13–36, 2001.
  4. S. Ghurye and I. Olkin. A characterization of the multivariate normal distribution. Ann. Math. Statist., 33(2):533–541, June 1962.
  5. Causal discovery from temporal data. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, page 5803–5804, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599552. URL https://doi.org/10.1145/3580305.3599552.
  6. T. HSING and R. EUBANK. Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley, Chichester, 2015.
  7. K. Y. Lee and L. Li. Functional structural equation model. Journal of the Royal Statistical Society: Series B, 84(2), 2022.
  8. B. Li. Linear operator-based statistical analysis: A useful paradigm for big data. Canadian Journal of Statistics, 46(1):79–103, 2018. doi: https://doi.org/10.1002/cjs.11329. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cjs.11329.
  9. Bayesian networks in biomedicine and health-care. Artificial Intelligence in Medicine, 30:201–214, 04 2004. doi: 10.1016/j.artmed.2003.11.001.
  10. FSEM: Functional structural equation models for twin functional data. Journal of the American Statistical Association, 114(525):344–357, 2019.
  11. M. V. Myronyuk. On the Skitovich-Darmois theorem and Heyde theorem in a Banach space. Ukr Math J, 60:1437–1447, 2008.
  12. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge, U.K.: Cambridge University Press, 2000.
  13. Functional Graphical Models. J. Amer. Statist. Assoc., 114(525):211–222, 2019.
  14. Functional Data Analysis. Springer, 2005. ISBN 9780387400808. URL http://www.worldcat.org/isbn/9780387400808.
  15. Development of the social brain from age three to twelve years. Nature Communications, 9(1):1027, 2018.
  16. Directed cyclic graph for causal discovery from multivariate functional data, 2023.
  17. Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005. doi: 10.1126/science.1105809. URL https://www.science.org/doi/abs/10.1126/science.1105809.
  18. An analysis of variance test for normality (complete samples). Biometrika, 52(3/4):591–611, 1965. ISSN 00063444. URL http://www.jstor.org/stable/2333709.
  19. A Linear Non-Gaussian Acyclic Model for Causal Discovery. Journal of Machine Learning Research, 7(72):2003–2030, 2006.
  20. DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model. Journal of Machine Learning Research, 12(33):1225–1248, 2011.
  21. V. P. Skitivic. On a property of the normal distribution. Dokl. Akad. Nauk SSSR (N.S.), (89):217–219, 1953.
  22. Causation, Prediction, and Search. The MIT Press, 2000.
  23. The max-min hill-climbing bayesian network structure learning algorithm. Mach Learn, 65:31–78, 2006.
  24. R. Tsay and M. Pourahmadi. Modelling structured correlation matrices. Biometrika, 104(1):237–242, 2017.
  25. J. van Neerven. Stochastic Evolution Equations, 3 2020. URL https://ocw.tudelft.nl/courses/stochastic-evolution-equations/subjects/lecture-4-gaussian-random-variables/.
  26. Z. Wei and H. Li. A hidden spatial-temporal markov random field model for network-based analysis of time course gene expression data. The Annals of Applied Statistics, 2(1):408–429, 2008.
  27. BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS ONE, 8(7):e68910, 2013.
  28. T. Yang and J. Suzuki. The functional lingam. In A. Salmerön and R. Rumï, editors, The 11th International Conference on Probabilistic Graphical Models, volume 186, pages 25–36. PMLR, 05–07 Oct 2022.
  29. Functional bayesian networks for discovering causality from multivariate functional data, 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com