Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LDPC-cat codes for low-overhead quantum computing in 2D (2401.09541v2)

Published 17 Jan 2024 in quant-ph

Abstract: Quantum low-density parity-check (qLDPC) codes are a promising construction for drastically reducing the overhead of fault-tolerant quantum computing (FTQC) architectures. However, all of the known hardware implementations of these codes require advanced technologies, such as long-range qubit connectivity, high-weight stabilizers, or multi-layered chip layouts. An alternative approach to reduce the hardware overhead of fault-tolerance is to use bosonic cat qubits where bit-flip errors are exponentially suppressed by design. In this work, we combine both approaches and propose an architecture based on cat qubits concatenated in classical LDPC codes correcting for phase-flips. We find that employing such phase-flip LDPC codes provides two major advantages. First, the hardware implementation of the code can be realised using short-range qubit interactions in 2D and low-weight stabilizers, which makes it readily compatible with current superconducting circuit technologies. Second, we demonstrate how to implement a fault-tolerant universal set of logical gates with a second layer of cat qubits while maintaining the local connectivity. We conduct a numerical brute force optimisation of these classical codes to find the ones with the best encoding rate for algorithmically relevant code distances. We discover that some of the best codes benefit from a cellular automaton structure. This allows us to define families of codes with high encoding rates and distances. Finally, we numerically assess the performance of our codes under circuit-level noise. Assuming a physical phase-flip error probability $\epsilon \approx 0.1\%$, our $[165+8\ell, 34+2\ell, 22]$ code family allows to encode $100$ logical qubits with a total logical error probability (including both logical phase-flip and bit-flip) per cycle and per logical qubit $\epsilon_L \leq 10{-8}$ on a $758$ cat qubit chip.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (102)
  1. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3), sep 2012. doi: 10.1103/physreva.86.032324. URL https://doi.org/10.1103/physreva.86.032324.
  2. Relaxing hardware requirements for surface code circuits using time-dynamics. Quantum, 7:1172, November 2023. ISSN 2521-327X. doi: 10.22331/q-2023-11-07-1172. URL http://dx.doi.org/10.22331/q-2023-11-07-1172.
  3. High-threshold and low-overhead fault-tolerant quantum memory, 2023. URL https://arxiv.org/abs/2308.07915.
  4. Performance analysis of a repetition cat code architecture: Computing 256-bit elliptic curve logarithm in 9 hours with 126133 cat qubits. Physical Review Letters, 131(4), July 2023. ISSN 1079-7114. doi: 10.1103/physrevlett.131.040602. URL http://dx.doi.org/10.1103/PhysRevLett.131.040602.
  5. Daniel R. Simon. On the power of quantum computation. SIAM Journal on Computing, 26(5):1474–1483, 1997. doi: 10.1137/S0097539796298637. URL https://doi.org/10.1137/S0097539796298637.
  6. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, oct 1997. doi: 10.1137/s0097539795293172. URL https://doi.org/10.1137/s0097539795293172.
  7. Assessing requirements to scale to practical quantum advantage, 2022. URL https://arxiv.org/abs/2211.07629.
  8. Practical quantum advantage in quantum simulation. Nature, 607(7920):667–676, July 2022a. ISSN 1476-4687. doi: 10.1038/s41586-022-04940-6. URL http://dx.doi.org/10.1038/s41586-022-04940-6.
  9. Disentangling hype from practicality: On realistically achieving quantum advantage. Communications of the ACM, 66(5):82–87, April 2023. ISSN 1557-7317. doi: 10.1145/3571725. URL http://dx.doi.org/10.1145/3571725.
  10. Quantum algorithms: A survey of applications and end-to-end complexities, 2023. URL https://arxiv.org/abs/2310.03011.
  11. Quantinuum. A race-track trapped-ion quantum processor. Physical Review X, 13(4), December 2023. ISSN 2160-3308. doi: 10.1103/physrevx.13.041052. URL http://dx.doi.org/10.1103/PhysRevX.13.041052.
  12. Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature, 614(7949):676–681, February 2023. ISSN 1476-4687. doi: 10.1038/s41586-022-05434-1. URL http://dx.doi.org/10.1038/s41586-022-05434-1.
  13. Evidence for the utility of quantum computing before fault tolerance. Nature, 618(7965):500–505, 2023.
  14. Peter W. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4):R2493–R2496, October 1995. doi: 10.1103/physreva.52.r2493. URL https://doi.org/10.1103/physreva.52.r2493.
  15. P. W. Shor. Fault-tolerant quantum computation. FOCS ’96, page 56, USA, 1996. IEEE Computer Society.
  16. A. Steane. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954):2551–2577, November 1996. doi: 10.1098/rspa.1996.0136. URL https://doi.org/10.1098/rspa.1996.0136.
  17. E. Knill. Resilient quantum computation. Science, 279(5349):342–345, January 1998. doi: 10.1126/science.279.5349.342. URL https://doi.org/10.1126/science.279.5349.342.
  18. Topological quantum memory. Journal of Mathematical Physics, 43(9):4452–4505, sep 2002. doi: 10.1063/1.1499754. URL https://doi.org/10.1063/1.1499754.
  19. A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, January 2003. doi: 10.1016/s0003-4916(02)00018-0. URL https://doi.org/10.1016/s0003-4916(02)00018-0.
  20. How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits. Quantum, page 433, Apr 2021. doi: 10.22331/q-2021-04-15-433. URL https://arxiv.org/abs/1905.09749.
  21. Protected gates for superconducting qubits. Physical Review A, 87(5):052306, 2013.
  22. Quantum low-density parity-check codes. PRX Quantum, 2:040101, Oct 2021. doi: 10.1103/PRXQuantum.2.040101. URL https://link.aps.org/doi/10.1103/PRXQuantum.2.040101.
  23. Asymptotically good quantum and locally testable classical LDPC codes. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 375–388, 2022.
  24. Decoding quantum Tanner codes. IEEE Transactions on Information Theory, 2023.
  25. Good Quantum LDPC Codes with Linear Time Decoders. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, page 905–918, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399135. doi: 10.1145/3564246.3585101. URL https://doi.org/10.1145/3564246.3585101.
  26. Decoding Quantum Tanner Codes. IEEE Transactions on Information Theory, 69(8):5100–5115, 2023. doi: 10.1109/TIT.2023.3267945.
  27. Single-shot decoding of good quantum ldpc codes, 2023. URL https://arxiv.org/abs/2306.12470.
  28. Hierarchical memories: Simulating quantum LDPC codes with local gates. arXiv preprint arXiv:2303.04798, 2023.
  29. Yoked surface codes. arXiv preprint arXiv:2312.04522, 2023.
  30. Connectivity constrains quantum codes. Quantum, 6:711, May 2022. ISSN 2521-327X. doi: 10.22331/q-2022-05-13-711. URL http://dx.doi.org/10.22331/q-2022-05-13-711.
  31. Tradeoffs for reliable quantum information storage in 2d systems. Physical review letters, 104(5):050503, 2010.
  32. Logical quantum processor based on reconfigurable atom arrays. Nature, pages 1–3, 2023.
  33. Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays, 2023a. URL https://arxiv.org/abs/2308.08648.
  34. Daniel Gottesman. Fault-tolerant quantum computation with constant overhead. arXiv preprint arXiv:1310.2984, 2013.
  35. Hyperbolic and semi-hyperbolic surface codes for quantum storage. Quantum Science and Technology, 2(3):035007, 2017.
  36. Fault-tolerant gates on hypergraph product codes. Physical Review X, 11(1):011023, 2021.
  37. Low-overhead fault-tolerant quantum computing using long-range connectivity. Science Advances, 8(20):eabn1717, 2022.
  38. Tomas Jochym-O’Connor. Fault-tolerant gates via homological product codes. Quantum, 3:120, 2019.
  39. Partitioning qubits in hypergraph product codes to implement logical gates. Quantum, 7:1153, 2023.
  40. Fold-transversal clifford gates for quantum codes. arXiv preprint arXiv:2202.06647, 2022.
  41. Css code surgery as a universal construction, 2023. URL https://arxiv.org/abs/2301.13738.
  42. Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries. arXiv preprint arXiv:2310.16982, 2023.
  43. Higher-group symmetry of (3+ 1) d fermionic ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge theory: logical ccz, cs, and t gates from higher symmetry. arXiv preprint arXiv:2311.05674, 2023.
  44. Universal logical gates with constant overhead: instantaneous dehn twists for hyperbolic quantum codes. Quantum, 3:180, August 2019. ISSN 2521-327X. doi: 10.22331/q-2019-08-26-180. URL http://dx.doi.org/10.22331/q-2019-08-26-180.
  45. High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction. Physical Review X, 8(2):021054, May 2018. doi: 10.1103/PhysRevX.8.021054.
  46. Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Physical Review A, 99(3):032344, March 2019. doi: 10.1103/PhysRevA.99.032344.
  47. Fault-tolerant bosonic quantum error correction with the surface–gottesman-kitaev-preskill code. Phys. Rev. A, 101:012316, Jan 2020. doi: 10.1103/PhysRevA.101.012316. URL https://link.aps.org/doi/10.1103/PhysRevA.101.012316.
  48. Quantum information processing with bosonic qubits in circuit qed. Quantum Science and Technology, 6(3):033001, April 2021. ISSN 2058-9565. doi: 10.1088/2058-9565/abe989. URL http://dx.doi.org/10.1088/2058-9565/abe989.
  49. Repetition cat qubits for fault-tolerant quantum computation. Physical Review X, 9(4), December 2019. doi: 10.1103/physrevx.9.041053. URL https://doi.org/10.1103/physrevx.9.041053.
  50. Erasure qubits: Overcoming the t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT limit in superconducting circuits, 2022.
  51. Confining the state of light to a quantum manifold by engineered two-photon loss. Science, 347(6224):853–857, February 2015. doi: 10.1126/science.aaa2085. URL https://doi.org/10.1126/science.aaa2085.
  52. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New Journal of Physics, 16(4):045014, apr 2014. doi: 10.1088/1367-2630/16/4/045014. URL https://doi.org/10.1088%2F1367-2630%2F16%2F4%2F045014.
  53. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Nature Physics, 16(5):509–513, March 2020. doi: 10.1038/s41567-020-0824-x. URL https://doi.org/10.1038/s41567-020-0824-x.
  54. One hundred second bit-flip time in a two-photon dissipative oscillator. PRX Quantum, 4(2), June 2023. ISSN 2691-3399. doi: 10.1103/prxquantum.4.020350. URL http://dx.doi.org/10.1103/PRXQuantum.4.020350.
  55. Quantum control of a cat-qubit with bit-flip times exceeding ten seconds. arXiv preprint arXiv:2307.06617, 2023.
  56. Autoparametric resonance extending the bit-flip time of a cat qubit up to 0.3 s. arXiv preprint arXiv:2307.06761, 2023.
  57. Error rates and resource overheads of repetition cat qubits. Physical Review A, 103(4), April 2021. ISSN 2469-9934. doi: 10.1103/physreva.103.042413. URL http://dx.doi.org/10.1103/PhysRevA.103.042413.
  58. Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum, 3, 2022.
  59. Autonomous quantum error correction and fault-tolerant quantum computation with squeezed cat qubits. npj Quantum Information, 9(1), August 2023b. ISSN 2056-6387. doi: 10.1038/s41534-023-00746-0. URL http://dx.doi.org/10.1038/s41534-023-00746-0.
  60. High-performance repetition cat code using fast noisy operations. Quantum, 7:1198, December 2023. ISSN 2521-327X. doi: 10.22331/q-2023-12-06-1198. URL http://dx.doi.org/10.22331/q-2023-12-06-1198.
  61. Bias-tailored quantum LDPC codes. Quantum, 7:1005, May 2023. ISSN 2521-327X. doi: 10.22331/q-2023-05-15-1005. URL http://dx.doi.org/10.22331/q-2023-05-15-1005.
  62. Hybrid quantum-classical approach to correlated materials. Physical Review X, 6(3), September 2016. ISSN 2160-3308. doi: 10.1103/physrevx.6.031045. URL http://dx.doi.org/10.1103/PhysRevX.6.031045.
  63. Practical quantum advantage in quantum simulation. Nature, 607(7920):667–676, 2022b.
  64. Encoding electronic spectra in quantum circuits with linear t complexity. Physical Review X, 8(4):041015, 2018.
  65. Even more efficient quantum computations of chemistry through tensor hypercontraction. PRX Quantum, 2(3), July 2021. ISSN 2691-3399. doi: 10.1103/prxquantum.2.030305. URL http://dx.doi.org/10.1103/PRXQuantum.2.030305.
  66. Markus Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de, 2007.
  67. Nikolaj Bjorner and et al. Z3 theorem prover. URL https://github.com/Z3Prover/z3.
  68. Beni Yoshida. Information storage capacity of discrete spin systems. Annals of Physics, 338:134–166, 2013.
  69. Fracton models from product codes, 2023. URL https://arxiv.org/abs/2312.08462.
  70. Glassy dynamics and aging in an exactly solvable spin model. Physical Review E, 60(5):5068, 1999.
  71. Design of caecc-cellular automata based error correcting code. IEEE Transactions on Computers, 43(6):759–764, 1994.
  72. A cellular automaton decoder for a noise-bias tailored color code. Quantum, 7:940, 2023.
  73. Correcting spanning errors with a fractal code. IEEE Transactions on Information Theory, 67(7):4504–4516, 2021.
  74. Richard Townsend and E Weldon. Self-orthogonal quasi-cyclic codes. IEEE Transactions on Information Theory, 13(2):183–195, 1967.
  75. Degenerate quantum LDPC codes with good finite length performance. Quantum, 5:585, 2021.
  76. Decoding across the quantum low-density parity-check code landscape. Physical Review Research, 2(4), Dec 2020. ISSN 2643-1564. doi: 10.1103/physrevresearch.2.043423. URL http://dx.doi.org/10.1103/PhysRevResearch.2.043423.
  77. Joschka Roffe. LDPC: Python tools for low density parity check codes, 2022. URL https://pypi.org/project/ldpc/.
  78. Surface code quantum computing by lattice surgery. New Journal of Physics, 14, 2012. doi: 10.1088/1367-2630/14/12/123011.
  79. Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical Review A, 57(1):127, 1998.
  80. Andrew M Steane. Efficient fault-tolerant quantum computing. Nature, 399(6732):124–126, 1999.
  81. Fault-tolerant logical gate networks for calderbank-shor-steane codes. Physical Review A, 72(5):052335, 2005.
  82. Constant-overhead quantum error correction with thin planar connectivity. Physical Review Letters, 129(5), July 2022. ISSN 1079-7114. doi: 10.1103/physrevlett.129.050504. URL http://dx.doi.org/10.1103/PhysRevLett.129.050504.
  83. Aspects of indium solder bumping and indium bump bonding useful for assembling cooled mosaic sensors. Microelectronics International, 8(2):27–30, February 1991. ISSN 1356-5362. doi: 10.1108/eb044447. URL http://dx.doi.org/10.1108/eb044447.
  84. 3d integrated superconducting qubits. npj Quantum Information, 3(1), October 2017. ISSN 2056-6387. doi: 10.1038/s41534-017-0044-0. URL http://dx.doi.org/10.1038/s41534-017-0044-0.
  85. Qubit compatible superconducting interconnects. Quantum Science and Technology, 3(1):014005, November 2017. ISSN 2058-9565. doi: 10.1088/2058-9565/aa94fc. URL http://dx.doi.org/10.1088/2058-9565/aa94fc.
  86. Solid-state qubits integrated with superconducting through-silicon vias. npj Quantum Information, 6(1), July 2020. ISSN 2056-6387. doi: 10.1038/s41534-020-00289-8. URL http://dx.doi.org/10.1038/s41534-020-00289-8.
  87. Coherent oscillations inside a quantum manifold stabilized by dissipation. Physical Review X, 8(2), April 2018. doi: 10.1103/physrevx.8.021005. URL https://doi.org/10.1103/physrevx.8.021005.
  88. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nature Physics, 18(1):107–111, 2022.
  89. Superconducting cavity qubit with tens of milliseconds single-photon coherence time. PRX Quantum, 4(3), September 2023. ISSN 2691-3399. doi: 10.1103/prxquantum.4.030336. URL http://dx.doi.org/10.1103/PRXQuantum.4.030336.
  90. Towards a bias-preserving cnot gate between stabilized cat qubits (part 2). Bulletin of the American Physical Society, 2023.
  91. Surface code implementation of block code state distillation. Scientific Reports, 3(1), June 2013. doi: 10.1038/srep01939. URL https://doi.org/10.1038/srep01939.
  92. Low overhead quantum computation using lattice surgery, 2018. URL https://arxiv.org/abs/1808.06709.
  93. Quantum error correction using squeezed schrödinger cat states. Physical Review A, 106(2), August 2022. ISSN 2469-9934. doi: 10.1103/physreva.106.022431. URL http://dx.doi.org/10.1103/PhysRevA.106.022431.
  94. Quantum error correction with dissipatively stabilized squeezed-cat qubits. Physical Review A, 107(3), March 2023. ISSN 2469-9934. doi: 10.1103/physreva.107.032423. URL http://dx.doi.org/10.1103/PhysRevA.107.032423.
  95. Combined dissipative and hamiltonian confinement of cat qubits. PRX Quantum, 3, may 2022. doi: 10.1103/PRXQuantum.3.020339. URL https://doi.org/10.1103/PRXQuantum.3.020339.
  96. Engineering fast bias-preserving gates on stabilized cat qubits. Phys. Rev. Research, 4:013082, Feb 2022. doi: 10.1103/PhysRevResearch.4.013082. URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.013082.
  97. Stabilizing a bosonic qubit using colored dissipation. PRL, 128, mar 2022. URL https://doi.org/10.1103/PhysRevLett.128.110502.
  98. Two-photon driven kerr quantum oscillator with multiple spectral degeneracies. Physical Review A, 107(4), April 2023. ISSN 2469-9934. doi: 10.1103/physreva.107.042407. URL http://dx.doi.org/10.1103/PhysRevA.107.042407.
  99. The squeezed kerr oscillator: spectral kissing and phase-flip robustness, 2022.
  100. Designing high-fidelity zeno gates for dissipative cat qubits. PRX Quantum, 4(4), October 2023. ISSN 2691-3399. doi: 10.1103/prxquantum.4.040316. URL http://dx.doi.org/10.1103/PRXQuantum.4.040316.
  101. Alexander Vardy. The intractability of computing the minimum distance of a code. IEEE Transactions on Information Theory, 43(6):1757–1766, 1997.
  102. Factoring 2048-bit RSA integers in 177 days with 13436 qubits and a multimode memory. Physical Review Letters, 127(14):140503. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.127.140503.
Citations (7)

Summary

  • The paper introduces an innovative LDPC-cat code design that synergizes cat qubits with LDPC codes to reduce error correction overhead in quantum systems.
  • It leverages 2D grid structures and low-weight stabilizers compatible with current superconducting circuits for practical, fault-tolerant operation.
  • Numerical assessments demonstrate encoding of 100 logical qubits with error rates ≤10⁻⁸, underscoring the approach’s scalability and efficiency.

Review of "LDPC-cat Codes for Low-Overhead Quantum Computing in 2D"

The research paper proposes an innovative approach for reducing the overhead necessary for fault-tolerant quantum computing (FTQC) through a novel architectural design that synergizes cat qubits and Low-Density Parity-Check (LDPC) codes. This combination, referred to as LDPC-cat codes, is intended to address the challenges of scalability and hardware efficiency in the domain of quantum error correction.

Quantum LDPC codes are traditionally seen as an attractive paradigm due to their theoretical potential to decrease error correction overhead significantly. However, they have practical implementation challenges, especially concerning qubit connectivity and stabilization requirements. Generally, successful hardware realization demands long-range qubit connections and high-weight stabilizers. Meanwhile, cat qubits, which are bosonic qubits, inherently suppress bit-flip errors due to their noise bias, providing a promising alternative for phase-flip error correction when concatenated with classical LDPC codes.

In this paper, the authors propose a quantum architecture where phase-flip errors are corrected via LDPC codes, facilitating fault-tolerant computation with reduced hardware overhead. The architecture is based on two key elements:

  1. Hardware Implementation Using 2D Grid Structures: By ensuring compatibility with existing superconducting circuit technologies, the proposed architecture requires only short-range interactions and low-weight stabilizers, which is crucial for practical implementation.
  2. Constructing Logical Gates with Cat Qubits: A fault-tolerant universal set of logical gates can be implemented efficiently using a second layer of cat qubits. This maintains the local connectivity and exploits the intrinsic bias in cat qubits to protect against bit-flip errors, which are notably less frequent.

To substantiate the proposed architecture, the authors conduct a detailed numerical optimization of these codes, identifying those with high encoding rates and efficient error suppression capabilities. They report finding families of codes that exhibit both high performance and reduced hardware requirements.

Furthermore, the paper provides a thorough numerical assessment, contrasting the performance of these codes under circuit-level noise with different assumptions. Noteworthy results include:

  • Assuming realistic physical error probabilities (in the example given, about 0.1%), the proposed code family [165+8,34+2,22][165+8\ell, 34+2\ell, 22] can encode 100 logical qubits with a logical error probability per cycle that's kept exceedingly low at 108\leq 10^{-8} on a 758 qubit chip.

The implications of this development are significant for practical and theoretical paradigms in quantum computing. Practically, this work aligns quantum error correction codes with current technological capabilities, potentially accelerating the development and deployment of quantum processors capable of solving classically intractable problems. Theoretically, this advances the understanding of error correction in quantum systems, particularly regarding quantum-to-classical code transitions enabled by cat qubit architectures.

This paper also opens the door to future advances, such as reconfigurable quantum processors utilizing LDPC-cat codes, optimized logical gate implementations, and improvements in qubit coherence times, all of which will further bridge theoretical quantum computing models with experimental realizations. These findings are expected to spark secondary research efforts focused on pushing the boundaries of quantum error correction efficiency through innovative uses of hybrid qubit technologies.

Youtube Logo Streamline Icon: https://streamlinehq.com