Symmetric varieties for endoscopic groups (2401.09156v2)
Abstract: Given a quasi-split reductive group $G$ and a symmetric variety $X$, we introduce a notion of endoscopic varieties for $(G,X)$, and establish the foundational properties of these varieties such as matching of stable semi-simple orbits. To do this, we introduce certain automorphism groups of homogeneous spherical varieties, which encode the fine rational structure needed to work over non-algebraically closed fields. In particular, we establish the existence and uniqueness of the corresponding symmetric varieties under a mild restriction of the characteristic of the field of definition. We conjecture that this construction plays a role analogous to endoscopic groups in the context of the relative trace formula. As evidence, we show how our construction gives a pre-stabilization of regular elliptic terms of relative trace formulae for many pairs $(G,X)$. When the cotangent bundle of the symmetric variety is hyperspherical, we relate our theory to the Hamiltonian variety of the Langlands dual group introduced by Ben-Zvi, Sakellaridis, and Venkatesh, proving some structural conjectures for this variety in the symmetric setting.
- Groupoids, Geometric Induction and Gelfand Models. arXiv preprint arXiv:2012.15384, 2020.
- Jeffrey Adams. The real Chevalley involution. Compos. Math., 150(12):2127–2142, 2014.
- Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet-Rallis’s theorem. Duke Math. J., 149(3):509–567, 2009. With an appendix by the authors and Eitan Sayag.
- On the SL(2)SL2{\rm SL}(2)roman_SL ( 2 ) period integral. Amer. J. Math., 128(6):1429–1453, 2006.
- A local-global question in automorphic forms. Compos. Math., 149(6):959–995, 2013.
- Existence of equivariant models of spherical varieties and other G𝐺Gitalic_G-varieties. Int. Math. Res. Not. IMRN, (20):15932–16034, 2022.
- A. Borel. Automorphic L𝐿Litalic_L-functions. In Automorphic forms, representations and L𝐿Litalic_L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 27–61. Amer. Math. Soc., Providence, R.I., 1979.
- Mikhail Borovoi. Equivariant models of spherical varieties. Transform. Groups, 25(2):391–439, 2020.
- Raphaël Beuzart-Plessis. On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad. Invent. Math., 214(1):437–521, 2018.
- The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case. Publ. Math. Inst. Hautes Études Sci., 135:183–336, 2022.
- Isolation of cuspidal spectrum, with application to the Gan-Gross-Prasad conjecture. Ann. of Math. (2), 194(2):519–584, 2021.
- A local twisted trace formula for whittaker induction of coregular symmetric pairs: the geometric side. arXiv preprint arXiv:2312.10845, 2023.
- Michel Brion. Vers une généralisation des espaces symétriques. J. Algebra, 134(1):115–143, 1990.
- Michel Brion. Construction of equivariant vector bundles. arXiv preprint math/0410039, 2004.
- Groupes réductifs. Inst. Hautes Études Sci. Publ. Math., (27):55–150, 1965.
- Relative langlands duality. preprint, 2023.
- Unitary Friedberg–Jacquet periods. arXiv preprint arXiv:2108.04064, 2021.
- Pseudo-reductive groups, volume 17 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2010.
- Brian Conrad. Reductive group schemes. Lecture notes, 2010.
- Slices in the loop spaces of symmetric varieties and the formality conjecture. arXiv preprint arXiv:2310.20006, 2023.
- Pierre Deligne. Variétés de Shimura: interprétation modulaire, et techniques de construction de modeles canoniques. 1979.
- On representations distinguished by unitary groups. Publ. Math. Inst. Hautes Études Sci., 115:185–323, 2012.
- Multiplicative Higgs bundles and involutions. arXiv preprint arXiv:2304.02553, 2023.
- An introduction to automorphic representations. Available at website: https://www. math. duke. edu/~ hahn/GTM. pdf, 2019.
- Wee Teck Gan and Bryan Wang Peng Jun. Generalised Whittaker models as instances of relative Langlands duality. arXiv preprint arXiv:2309.08874, 2023.
- Oscar García-Prada. Vinberg pairs and Higgs bundles. arXiv preprint arXiv:2305.08202, 2023.
- Higgs bundles for real groups and the Hitchin-Kostant-Rallis section. Trans. Amer. Math. Soc., 370(4):2907–2953, 2018.
- Nearby cycle sheaves for symmetric pairs. arXiv preprint arXiv:1805.02794, 2018.
- Twisted relative trace formulae with a view towards unitary groups. Amer. J. Math., 136(1):1–58, 2014.
- Aloysius G. Helminck. Algebraic groups with a commuting pair of involutions and semisimple symmetric spaces. Adv. in Math., 71(1):21–91, 1988.
- A. G. Helminck. On the classification of k𝑘kitalic_k-involutions. Adv. Math., 153(1):1–117, 2000.
- A class of parabolic k𝑘kitalic_k-subgroups associated with symmetric k𝑘kitalic_k-varieties. Trans. Amer. Math. Soc., 350(11):4669–4691, 1998.
- T. Hameister and B. Morrissey. The Hitchin fibration for symmetric pair. preprint, 2023.
- Johannes Hofscheier. Containment relations among spherical subgroups. arXiv preprint arXiv:1804.00378, 2018.
- On rationality properties of involutions of reductive groups. Adv. Math., 99(1):26–96, 1993.
- Hervé Jacquet. Sur un résultat de Waldspurger. Ann. Sci. École Norm. Sup. (4), 19(2):185–229, 1986.
- Tasho Kaletha. Rigid inner forms of real and p𝑝pitalic_p-adic groups. Ann. of Math. (2), 184(2):559–632, 2016.
- Tasho Kaletha. Lectures on the stable trace formula, with emphasis on SL(2)SL2\mathrm{SL}(2)roman_SL ( 2 ). 2019. Lecture notes.
- Friedrich Knop. Automorphisms, root systems, and compactifications of homogeneous varieties. J. Amer. Math. Soc., 9(1):153–174, 1996.
- Friedrich Knop. Functoriality properties of the dual group. Doc. Math., 24:47–64, 2019.
- Robert E. Kottwitz. Rational conjugacy classes in reductive groups. Duke Mathematical Journal, 49(4):785–806, 1982.
- Robert E. Kottwitz. Stable trace formula: cuspidal tempered terms. Duke Math. J., 51(3):611–650, 1984.
- Robert E. Kottwitz. Stable trace formula: elliptic singular terms. Math. Ann., 275(3):365–399, 1986.
- Robert E. Kottwitz. Tamagawa numbers. Ann. of Math. (2), 127(3):629–646, 1988.
- The dual group of a spherical variety. Transactions of the Moscow Mathematical Society, 78:187–216, 2017.
- Jean-Pierre Labesse. Cohomologie, stabilisation et changement de base. Astérisque, (257):vi+161, 1999. Appendix A by Laurent Clozel and Labesse, and Appendix B by Lawrence Breen.
- R. P. Langlands. Stable conjugacy: definitions and lemmas. Canadian J. Math., 31(4):700–725, 1979.
- Spencer Leslie. The endoscopic fundamental lemma for unitary Friedberg-Jacquet periods. preprint, 2019.
- Spencer Leslie. Endoscopy for unitary symmetric spaces. preprint arXiv:1910.09685, 2019.
- Spencer Leslie. An analogue of the Grothendieck-Springer resolution for symmetric spaces. Algebra Number Theory, 15(1):69–107, 2021.
- Spencer Leslie. On the stabilization of relative trace formulae: descent and the fundamental lemma. Adv. Math., 394:Paper No. 108026, 68, 2022.
- Spencer Leslie. On the stabilization of relative trace formulae: elliptic terms. forthcoming, 2024.
- Paul Levy. Involutions of reductive lie algebras in positive characteristic. Advances in Mathematics, 210(2):505–559, 2007.
- L𝐿{L}italic_L-indistinguishability for SL2subscriptSL2\mathrm{SL}_{2}roman_SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-periods. in progress.
- Ivan V. Losev. Uniqueness property for spherical homogeneous spaces. Duke Math. J., 147(2):315–343, 2009.
- Periods of Eisenstein series: the Galois case. Duke Math. J., 120(1):153–226, 2003.
- R. P. Langlands and D. Shelstad. On the definition of transfer factors. Math. Ann., 278(1-4):219–271, 1987.
- Conjugates of Shimura varieties. In Hodge cycles, motives, and Shimura varieties, pages 280–356. Springer, 1982.
- David Nadler. Perverse sheaves on real loop Grassmannians. Invent. Math., 159(1):1–73, 2005.
- Bao Chau Ngo. Fibration de Hitchin et endoscopie. Invent. Math., 164(2):399–453, 2006.
- Bao Châu Ngô. Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci., (111):1–169, 2010.
- Bao Châu Ngô and B. Morrissey. forthcoming, 2024.
- Dipendra Prasad. Generalizing the MVW involution, and the contragredient. Trans. Amer. Math. Soc., 372(1):615–633, 2019.
- Dipendra Prasad. A “relative” local Langlands correspondence. arXiv preprint arXiv:1512.04347 (updated on personal website), 2020.
- On the residue method for period integrals. Duke Math. J., 170(7):1457–1515, 2021.
- N. Ressayre. Spherical homogeneous spaces of minimal rank. Adv. Math., 224(5):1784–1800, 2010.
- R. W. Richardson. Orbits, invariants, and representations associated to involutions of reductive groups. Invent. Math., 66(2):287–312, 1982.
- Roberto Rubio. On the Gelfand property for complex symmetric pairs. to appear in Trans. Amer. Math. Soc., 2022.
- Tonny Albert Springer et al. Some results on algebraic groups with involutions. In Algebraic groups and related topics, pages 525–543. Mathematical Society of Japan, 1985.
- Yiannis Sakellaridis. The Schwartz space of a smooth semi-algebraic stack. Selecta Math. (N.S.), 22(4):2401–2490, 2016.
- Yiannis Sakellaridis. Spherical varieties, functoriality, and quantization. arXiv preprint arXiv:2111.03004, 2021.
- Jiro Sekiguchi. The nilpotent subvariety of the vector space associated to a symmetric pair. Publ. Res. Inst. Math. Sci., 20(1):155–212, 1984.
- T. A. Springer. The classification of involutions of simple algebraic groups. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34(3):655–670, 1987.
- Robert Steinberg. Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80. American Mathematical Society, Providence, R.I., 1968.
- Periods and harmonic analysis on spherical varieties. Astérisque, (396):viii+360, 2017.
- Dmitry A. Timashev. Homogeneous spaces and equivariant embeddings, volume 138 of Encyclopaedia of Mathematical Sciences. Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8.
- J. Tits. Classification of algebraic semisimple groups. In Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pages 33–62. Amer. Math. Soc., Providence, RI, 1966.
- Thierry Vust. Opération de groupes réductifs dans un type de cônes presque homogenes. Bulletin de la Societe Mathematique de France, 102:317–333, 1974.
- Thierry Vust. Plongements d’espaces symétriques algébriques: une classification. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17(2):165–195, 1990.
- Chen Wan. On a multiplicity formula for spherical varieties. J. Eur. Math. Soc. (JEMS), 24(10):3629–3678, 2022.
- Zhiwei Yun. The fundamental lemma of Jacquet and Rallis. Duke Math. J., 156(2):167–227, 2011. With an appendix by Julia Gordon.
- Wei Zhang. Automorphic period and the central value of Rankin-Selberg L-function. J. Amer. Math. Soc., 27(2):541–612, 2014.