Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Quantum Cryptography Approach: Unleashing the Potential of Quantum Key Reconciliation Protocol for Secure Communication (2401.08987v1)

Published 17 Jan 2024 in quant-ph and cs.CR

Abstract: Quantum cryptography is the study of delivering secret communications across a quantum channel. Recently, Quantum Key Distribution (QKD) has been recognized as the most important breakthrough in quantum cryptography. This process facilitates two distant parties to share secure communications based on physical laws. The BB84 protocol was developed in 1984 and remains the most widely used among BB92, Ekert91, COW, and SARG04 protocols. However the practical security of QKD with imperfect devices have been widely discussed, and there are many ways to guarantee that generated key by QKD still provides unconditional security. This paper proposed a novel method that allows users to communicate while generating the secure keys as well as securing the transmission without any leakage of the data. In this approach sender will never reveal her basis, hence neither the receiver nor the intruder will get knowledge of the fundamental basis.Further to detect Eve, polynomial interpolation is also used as a key verification technique. In order to fully utilize the quantum computing capabilities provided by IBM quantum computers, the protocol is executed using the Qiskit backend for 45 qubits. This article discusses a plot of % error against alpha (strength of eavesdropping). As a result, different types of noise have been included, and the success probability of the desired key bits has been determined. Furthermore, the success probability under depolarizing noise is explained for different qubit counts.Last but not least, even when the applied noise is increased to maximum capacity, a 50% probability of successful key generation is still observed in an experiment.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Lo, Hoi-Kwong , Chau, Hoi Fung: Unconditional security of quantum key distribution over arbitrarily long distances. science 283(5410), 2050–2056 (1999) https://doi.org/10.1126/283.5410.2050 Diffie and Hellman [2022] Diffie, W., Hellman, M.E.: New directions in cryptography, pp. 365–390 (2022). https://doi.org/10.1145/3549993.3550007 Monz et al. [2016] Monz, T., Nigg, D., Martinez, E.A. title = Realization of a scalable Shor algorithm, Brandl, M.F., Schindler, P., Rines, R., Wang, S.X., Chuang, I.L., Blatt, R. Science 351(6277), 1068–1070 (2016) https://doi.org/10.1126/science.aad9480 Steane [1998] Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Diffie, W., Hellman, M.E.: New directions in cryptography, pp. 365–390 (2022). https://doi.org/10.1145/3549993.3550007 Monz et al. [2016] Monz, T., Nigg, D., Martinez, E.A. title = Realization of a scalable Shor algorithm, Brandl, M.F., Schindler, P., Rines, R., Wang, S.X., Chuang, I.L., Blatt, R. Science 351(6277), 1068–1070 (2016) https://doi.org/10.1126/science.aad9480 Steane [1998] Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Monz, T., Nigg, D., Martinez, E.A. title = Realization of a scalable Shor algorithm, Brandl, M.F., Schindler, P., Rines, R., Wang, S.X., Chuang, I.L., Blatt, R. Science 351(6277), 1068–1070 (2016) https://doi.org/10.1126/science.aad9480 Steane [1998] Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  2. Diffie, W., Hellman, M.E.: New directions in cryptography, pp. 365–390 (2022). https://doi.org/10.1145/3549993.3550007 Monz et al. [2016] Monz, T., Nigg, D., Martinez, E.A. title = Realization of a scalable Shor algorithm, Brandl, M.F., Schindler, P., Rines, R., Wang, S.X., Chuang, I.L., Blatt, R. Science 351(6277), 1068–1070 (2016) https://doi.org/10.1126/science.aad9480 Steane [1998] Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Monz, T., Nigg, D., Martinez, E.A. title = Realization of a scalable Shor algorithm, Brandl, M.F., Schindler, P., Rines, R., Wang, S.X., Chuang, I.L., Blatt, R. Science 351(6277), 1068–1070 (2016) https://doi.org/10.1126/science.aad9480 Steane [1998] Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  3. Monz, T., Nigg, D., Martinez, E.A. title = Realization of a scalable Shor algorithm, Brandl, M.F., Schindler, P., Rines, R., Wang, S.X., Chuang, I.L., Blatt, R. Science 351(6277), 1068–1070 (2016) https://doi.org/10.1126/science.aad9480 Steane [1998] Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  4. Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117 (1998) Pal et al. [2020] Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  5. Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving sudoku game using a hybrid classical-quantum algorithm. Europhysics Letters 128(4), 40007 (2020) https://doi.org/0.1209/0295-5075/128/40007 Huttner et al. [1995] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  6. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Physical Review A 51(3), 1863 (1995) https://doi.org/10.1103/51.1863 Pirandola et al. [2015] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  7. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nature Photonics 9(6), 397–402 (2015) https://doi.org/10.1038/nphoton.2015.83 Wang et al. [2014] Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  8. Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Optics express 22(18), 21739–21756 (2014) https://doi.org/10.1364/OE.22.021739 Browne et al. [2017] Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  9. Browne, D., Bose, S., Mintert, F., Kim, M.: From quantum optics to quantum technologies. Progress in Quantum Electronics 54, 2–18 (2017) https://doi.org/10.1016/j.pquantelec.2017.06.002 Zhao et al. [2008] Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  10. Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A 78(4), 042333 (2008) https://doi.org/10.1103/PhysRevA.78.042333 Hwang [2003] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  11. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Physical review letters 91(5), 057901 (2003) https://doi.org/10.1103/PhysRevLett.91.057901 Bernstein et al. [2012] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  12. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Progress in Cryptology–LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings 2, pp. 159–176 (2012). https://doi.org/10.1007/978-3-642-33481-8_9 . Springer Bruß [1998] Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  13. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters 81(14), 3018 (1998) https://doi.org/10.1103/81.3018 Liu et al. [2017] Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  14. Liu, W., Wang, Y.-B., Fan, W.-Q.: A novel protocol for the quantum secure multi-party summation based on two-particle bell states. International Journal of Theoretical Physics 56, 2783–2791 (2017) https://doi.org/10.1007/10773-017-3442-3 Berlekamp [1970] Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  15. Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of computation 24(111), 713–735 (1970) https://doi.org/10.2307/2004849 Kiktenko et al. [2017] Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  16. Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Physical Review Applied 8(4), 044017 (2017) https://doi.org/10.1103/PhysRevApplied.8.044017 Lee et al. [2018] Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  17. Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. arXiv preprint arXiv:1805.05046 (2018) https://doi.org/10.48550/arXiv.1805.05046 Martínez et al. [2022] Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  18. Martínez, V.G., Encinas, L.H., Muñoz, A.M.: A modification proposal for the reconciliation mechanism of the key exchange algorithm newhope. Logic Journal of the IGPL 30(6), 1028–1040 (2022) https://doi.org/10.1093/jigpal/jzac011 Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A [2020] Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  19. Kurt, Gunes Karabulut and Ozdemir, Enver, and Ozkirisci, Neslihan Aysen and Topal, Ozan Alp and Ugurlu, Emel A: A polynomial interpolation based quantum key reconciliation protocol: Error correction without information leakage. arXiv preprint arXiv:2004.07061 (2020) https://doi.org/10.48550/arXiv.2004.07061 Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian [2020] Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  20. Guo, Dabo and He, Chao and Guo, Tianhao, and Xue, Zhe and Feng, Qiang and Mu Jianjian: Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Information Processing 19(9), 320 (2020) https://doi.org/10.1007/s11128-020-02832-0 Schimpf et al. [2021] Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  21. Schimpf, C., Manna, S., Silva, S.F., Aigner, M., Rastelli, A.: Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 k. Advanced Photonics 3(6), 065001–065001 (2021) Dirks et al. [2021] Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  22. Dirks, B., Ferrario, I., Le Pera, A., Finocchiaro, D.V., Desmons, M., Lange, D., Man, H., Meskers, A.J., Morits, J., Neumann, N.M., et al.: Geoqkd: quantum key distribution from a geostationary satellite. In: International Conference on Space Optics—ICSO 2020, vol. 11852, pp. 222–236 (2021). SPIE Borisov et al. [2022] Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  23. Borisov, N., Petrov, I., Tayduganov, A.: Asymmetric adaptive ldpc-based information reconciliation for industrial quantum key distribution. Entropy 25(1), 31 (2022) https://doi.org/10.3390/e25010031 Twng et al. [2022] Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  24. Twng, J., Yi, Z., Li, J., Liang, Z., Wu, Y., Lei, W., Jiang, Z.L., Wang, X.: Improved polar-code-based efficient post-processing algorithm for quantum key distribution. Scientific Reports 12(1), 10155 (2022) https://doi.org/10.1038/s41598-022-14145-6 Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong [2023] Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  25. Wang, Xiangyu and Xu, Menghao and Zhao, Yin, and Chen, Ziyang and Yu, Song and Guo, Hong: Non-Gaussian reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:2305.01963 (2023) https://doi.org/10.48550/arXiv.2305.01963 Lin et al. [2023] Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  26. Lin, Y.-Q., Wang, M., Yang, X.-Q., Liu, H.-W.: Counterfactual quantum key distribution with untrusted detectors. Heliyon 9(2) (2023) https://doi.org/10.1016/j.heliyon.2023.e13719 Chen et al. [2021] Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  27. Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics 15(8), 570–575 (2021) https://doi.org/10.1038/s41566-021-00828-5 Lucamarini et al. [2018] Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  28. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018) https://doi.org/10.1038/s41586-018-0066-6 Wang et al. [2022] Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  29. Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nature photonics 16(2), 154–161 (2022) https://doi.org/10.1038/s41566-021-00928-2 Gu et al. [2022] Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  30. Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., Chen, Z.-B.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin 67(21), 2167–2175 (2022) https://doi.org/10.1016/j.scib.2022.10.010 Li et al. [2023] Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  31. Li, C.-L., Fu, Y., Liu, W.-B., Xie, Y.-M., Li, B.-H., Zhou, M.-G., Yin, H.-L., Chen, Z.-B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Physical Review Research 5(3), 033077 (2023) https://doi.org/10.1103/PhysRevResearch.5.033077 Zhou et al. [2023] Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  32. Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Physical Review Applied 19(1), 014036 (2023) https://doi.org/10.1103/PhysRevApplied.19.014036 [34] Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  33. Yin, H., Fu, Y., Li, C., Weng, C., Li, B., Gu, J., Lu, Y., Huang, S., Chen, Z.: Experimental quantum secure network with digital signatures and encryption. arxiv 2021. arXiv preprint arXiv:2107.14089 https://doi.org/10.1093/nsr/nwac228 Ridley [2021] Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  34. Ridley, S.: Quantum wars. Company Director 37(11), 26–30 (2021) https://doi.org/10.3316/informit.374591586611171 Aji et al. [2021] Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  35. Aji, A., Jain, K., Krishnan, P.: A survey of quantum key distribution (qkd) network simulation platforms. In: 2021 2nd Global Conference for Advancement in Technology (GCAT), pp. 1–8 (2021). https://doi.org/10.1109/GCAT52182.2021.9587708 . IEEE Sharma and Ketti Ramachandran [2021] Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  36. Sharma, N., Ketti Ramachandran, R.: The emerging trends of quantum computing towards data security and key management. Archives of Computational Methods in Engineering, 1–14 (2021) https://doi.org/10.1007/s11831-021-09578-7 Sharma and Saxena [2022] Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE
  37. Sharma, N., Saxena, V.: An efficient polynomial based quantum key distribution approach for secure communication. In: 2022 8th International Conference on Signal Processing and Communication (ICSC), pp. 36–42 (2022). https://doi.org/10.1109/ICSC56524.2022.10009470 . IEEE

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com