Performance Analysis and Optimization for Movable Antenna Aided Wideband Communications (2401.08974v1)
Abstract: Movable antenna (MA) has emerged as a promising technology to enhance wireless communication performance by enabling the local movement of antennas at the transmitter (Tx) and/or receiver (Rx) for achieving more favorable channel conditions. As the existing studies on MA-aided wireless communications have mainly considered narrow-band transmission in flat fading channels, we investigate in this paper the MA-aided wideband communications employing orthogonal frequency division multiplexing (OFDM) in frequency-selective fading channels. Under the general multi-tap field-response channel model, the wireless channel variations in both space and frequency are characterized with different positions of the MAs. Unlike the narrow-band transmission where the optimal MA position at the Tx/Rx simply maximizes the single-tap channel amplitude, the MA position in the wideband case needs to balance the amplitudes and phases over multiple channel taps in order to maximize the OFDM transmission rate over multiple frequency subcarriers. First, we derive an upper bound on the OFDM achievable rate in closed form when the size of the Tx/Rx region for antenna movement is arbitrarily large. Next, we develop a parallel greedy ascent (PGA) algorithm to obtain locally optimal solutions to the MAs' positions for OFDM rate maximization subject to finite-size Tx/Rx regions. To reduce computational complexity, a simplified PGA algorithm is also provided to optimize the MAs' positions more efficiently. Simulation results demonstrate that the proposed PGA algorithms can approach the OFDM rate upper bound closely with the increase of Tx/Rx region sizes and outperform conventional systems with fixed-position antennas (FPAs) under the wideband channel setup.
- A. Paulraj, D. Gore, R. Nabar, and H. Bolcskei, “An overview of MIMO communications - a key to gigabit wireless,” Proc. IEEE, vol. 92, no. 2, pp. 198–218, Feb. 2004.
- G. Stuber, J. Barry, S. McLaughlin, Y. Li, M. Ingram, and T. Pratt, “Broadband MIMO-OFDM wireless communications,” Proc. IEEE, vol. 92, no. 2, pp. 271–294, Feb. 2004.
- E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
- Z. Wan, Z. Gao, F. Gao, M. D. Renzo, and M.-S. Alouini, “Terahertz massive MIMO with holographic reconfigurable intelligent surfaces,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4732–4750, July 2021.
- K. K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Performance limits of fluid antenna systems,” IEEE Commun. Lett., vol. 24, no. 11, pp. 2469–2472, Nov. 2020.
- K.-K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Fluid antenna systems,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1950–1962, Mar. 2021.
- K.-K. Wong, K.-F. Tong, Y. Shen, Y. Chen, and Y. Zhang, “Bruce lee-inspired fluid antenna system: Six research topics and the potentials for 6G,” Front. Comms. Net., vol. 3, no. 853416, pp. 1–31, Mar. 2022.
- L. Zhu, W. Ma, and R. Zhang, “Modeling and performance analysis for movable antenna enabled wireless communications,” IEEE Trans. Wireless Commun., Nov. 14, 2023, early access, DOI: 10.1109/TWC.2023.3330887.
- W. Ma, L. Zhu, and R. Zhang, “MIMO capacity characterization for movable antenna systems,” IEEE Trans. Wireless Commun., Sep. 7, 2023, early access, DOI: 10.1109/TWC.2023.3307696.
- L. Zhu, W. Ma, and R. Zhang, “Movable antennas for wireless communication: Opportunities and challenges,” IEEE Commun. Mag., Oct. 16, 2023, early access, DOI: 10.1109/MCOM.001.2300212.
- D. W. S. Tam, “Electrolytic fluid antenna,” US Patent US7898484B1, 2008.
- B. Pan, J. Papapolymerou, and M. M. Tentzeris, “MEMS integrated and micromachined antenna elements, arrays, and feeding networks,” Modern Antenna Handbook, John Wiley & Sons, pp. 829–865, Sep. 2008.
- L. Zhu and K.-K. Wong, “Historical review of fluid antenna and movable antenna,” arXiv preprint arXiv:2401.02362, 2024.
- A. Molisch and M. Win, “MIMO systems with antenna selection,” IEEE Microwave Mag., vol. 5, no. 1, pp. 46–56, Mar. 2004.
- S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,” IEEE Commun. Mag., vol. 42, no. 10, pp. 68–73, Oct. 2004.
- L. Zhu, W. Ma, B. Ning, and R. Zhang, “Movable-antenna enhanced multiuser communication via antenna position optimization,” IEEE Trans. Wireless Commun., Dec. 12, 2023, early access, DOI: 10.1109/TWC.2023.3338626.
- L. Zhu, J. Zhang, Z. Xiao, X. Cao, D. O. Wu, and X.-G. Xia, “Millimeter-wave NOMA with user grouping, power allocation and hybrid beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5065–5079, Nov. 2019.
- B. Ning, Z. Tian, W. Mei, Z. Chen, C. Han, S. Li, J. Yuan, and R. Zhang, “Beamforming technologies for ultra-massive MIMO in terahertz communications,” IEEE Open J. Commun. Society, vol. 4, pp. 614–658, Feb. 2023.
- A. Zhuravlev, V. Razevig, S. Ivashov, A. Bugaev, and M. Chizh, “Experimental simulation of multi-static radar with a pair of separated movable antennas,” in Proc. IEEE International Conf. Microwaves Commun. Antennas Electron. Syst. (COMCAS), Nov. 2015, pp. 1–5.
- S. Basbug, “Design and synthesis of antenna array with movable elements along semicircular paths,” IEEE Antennas Wireless Propagat. Lett., vol. 16, pp. 3059–3062, Oct. 2017.
- H. Do, N. Lee, and A. Lozano, “Reconfigurable ULAs for line-of-sight MIMO transmission,” IEEE Trans. Wireless Commun., vol. 20, no. 5, pp. 2933–2947, May 2021.
- H. Do, S. Cho, J. Park, H.-J. Song, N. Lee, and A. Lozano, “Terahertz line-of-sight MIMO communication: Theory and practical challenges,” IEEE Commun. Mag., vol. 59, no. 3, pp. 104–109, Mar. 2021.
- X. Chen, B. Feng, Y. Wu, D. W. K. Ng, and R. Schober, “Joint beamforming and antenna movement design for moveable antenna systems based on statistical CSI,” in Proc. IEEE Global Commun. Conf., Dec. 2023, arXiv preprint arXiv:2308.06720.
- W. K. New, K.-K. Wong, H. Xu, K.-F. Tong, and C.-B. Chae, “Fluid antenna system: New insights on outage probability and diversity gain,” IEEE Trans. Wireless Commun., vol. 23, no. 1, pp. 128–140, Jan. 2024.
- G. Hu, Q. Wu, K. Xu, J. Ouyang, J. Si, Y. Cai, and N. Al-Dhahir, “Movable-antenna array enabled multiuser uplink: A low-complexity gradient descent for total transmit power minimization,” arXiv preprint arXiv:2312.05763, 2023.
- Z. Xiao, X. Pi, L. Zhu, X.-G. Xia, and R. Zhang, “Multiuser communications with movable-antenna base station: Joint antenna positioning, receive combining, and power control,” arXiv preprint arXiv:2308.09512, 2023.
- Z. Cheng, N. Li, J. Zhu, X. She, C. Ouyang, and P. Chen, “Sum-rate maximization for movable antenna enabled multiuser communications,” arXiv preprint arXiv:2309.11135, 2023.
- H. Qin, W. Chen, Z. Li, Q. Wu, N. Cheng, and F. Chen, “Antenna positioning and beamforming design for movable-antenna enabled multi-user downlink communications,” arXiv preprint arXiv:2311.03046, 2023.
- Y. Wu, D. Xu, D. W. K. Ng, W. Gerstacker, and R. Schober, “Movable antenna-enhanced multiuser communication: Optimal discrete antenna positioning and beamforming,” in Proc. IEEE Global Commun. Conf., Dec. 2023, arXiv preprint arXiv:2308.02304.
- K.-K. Wong and K.-F. Tong, “Fluid antenna multiple access,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 4801–4815, Jul. 2022.
- K.-K. Wong, D. Morales-Jimenez, K.-F. Tong, and C.-B. Chae, “Slow fluid antenna multiple access,” IEEE Trans. Commun., vol. 71, no. 5, pp. 2831–2846, May 2023.
- K.-K. Wong, K.-F. Tong, Y. Chen, and Y. Zhang, “Fast fluid antenna multiple access enabling massive connectivity,” IEEE Commun. Lett., vol. 27, no. 2, pp. 711–715, Feb. 2023.
- K.-K. Wong, K.-F. Tong, Y. Chen, Y. Zhang, and C.-B. Chae, “Opportunistic fluid antenna multiple access,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 7819–7833, Nov. 2023.
- L. Zhu, W. Ma, and R. Zhang, “Movable-antenna array enhanced beamforming: Achieving full array gain with null steering,” IEEE Commun. Lett., vol. 27, no. 12, pp. 3340–3344, Dec. 2023.
- A. Leshem and U. Erez, “The interference channel revisited: Aligning interference by adjusting antenna separation,” IEEE Trans. Signal Process., vol. 69, pp. 1874–1884, Mar. 2021.
- W. Ma, L. Zhu, and R. Zhang, “Multi-beam forming with movable-antenna array,” IEEE Commun. Lett., Jan. 8, 2024, early access, DOI: 10.1109/TWC.2023.3307696.
- G. Hu, Q. Wu, K. Xu, J. Si, and N. Al-Dhahir, “Secure wireless communication via movable-antenna array,” arXiv preprint arXiv:2311.07104, 2023.
- G. Hu, Q. Wu, J. Ouyang, K. Xu, Y. Cai, and N. Al-Dhahir, “Movable-antenna array-enabled wireless communication with CoMP reception,” arXiv preprint arXiv:2311.11814, 2023.
- W. Ma, L. Zhu, and R. Zhang, “Compressed sensing based channel estimation for movable antenna communications,” IEEE Commun. Lett., vol. 27, no. 10, pp. 2747–2751, Oct. 2023.
- Z. Xiao, S. Cao, L. Zhu, Y. Liu, X.-G. Xia, and R. Zhang, “Channel estimation for movable antenna communication systems: A framework based on compressed sensing,” arXiv preprint arXiv:2312.06969, 2023.
- Z. Zhang, J. Zhu, L. Dai, and R. W. Heath Jr, “Successive bayesian reconstructor for channel estimation in flexible antenna systems,” arXiv preprint arXiv:2312.06551, 2023.
- B. Zheng and R. Zhang, “Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization,” IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 518–522, Apr. 2020.
- T. Riihonen, S. Werner, and R. Wichman, “Generalized exponential decay model for power-delay profiles of multipath channels,” in Proc. XXXII Finnish URSI Convention on Radio Science, Aug. 2010, pp. 53–56.