Remote sensing of a levitated superconductor with a flux-tunable microwave cavity (2401.08854v3)
Abstract: We present a cavity-electromechanical system comprising a superconducting quantum interference device which is embedded in a microwave resonator and coupled via a pick-up loop to a 6 $\mu$g magnetically-levitated superconducting sphere. The motion of the sphere in the magnetic trap induces a frequency shift in the SQUID-cavity system. We use microwave spectroscopy to characterize the system, and we demonstrate that the electromechanical interaction is tunable. The measured displacement sensitivity of $10{-7} \, \mathrm{m} / \sqrt{\mathrm{Hz}}$, defines a path towards ground-state cooling of levitated particles with Planck-scale masses at millikelvin environment temperatures.
- W. E. Shanks, D. L. Underwood, and A. A. Houck, A scanning transmon qubit for strong coupling circuit quantum electrodynamics, Nat. Commun. 4, 1991 (2013).
- J. Clarke, Principles and applications of squids, Proc IEEE 77, 1208 (1989).
- J. Clarke and A. I. Braginski, The SQUID Handbook., Vol. 1, Fundamentals and Technology of SQUIDS and SQUID Systems (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- M. W. Mitchell and S. Palacios Alvarez, Colloquium : Quantum limits to the energy resolution of magnetic field sensors, Rev. Mod. Phys. 92, 021001 (2020).
- I. C. Rodrigues, D. Bothner, and G. A. Steele, Coupling microwave photons to a mechanical resonator using quantum interference, Nat. Commun. 10, 5359 (2019).
- D. Bothner, I. C. Rodrigues, and G. A. Steele, Four-wave-cooling to the single phonon level in kerr optomechanics, Commun. Phys. 5, 33 (2022).
- M. Cirio, G. K. Brennen, and J. Twamley, Quantum magnetomechanics: Ultrahigh-Q𝑄\mathit{Q}italic_Q-levitated mechanical oscillators, Phys. Rev. Lett. 109, 147206 (2012).
- O. Romero-Isart, Quantum superposition of massive objects and collapse models, Phys. Rev. A 84, 73 (2011).
- C. M. deWitt and D. Rickles, eds., (The Role of Gravita- tion in Physics. Report from the 1957 Chapel Hill Conference, Max Planck Research Library for the History and Development of Knowledge, 2011).
- C. Marletto and V. Vedral, Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Phys. Rev. Lett. 119, 240402 (2017).
- C. Burrage and J. Sakstein, Tests of chameleon gravity, Living Rev. Relativ 21, 1 (2018).
- R. J. Marshman, A. Mazumdar, and S. Bose, Locality and entanglement in table-top testing of the quantum nature of linearized gravity, Phys. Rev. A 101, 052110 (2020).
- M. Aspelmeyer, How to avoid the appearance of a classical world in gravity experiments (2022), arXiv:2203.05587 .
- D. C. Moore and A. A. Geraci, Searching for new physics using optically levitated sensors, Quantum Sci. Technol. 6, 014008 (2021).
- K. Streltsov, J. S. Pedernales, and M. B. Plenio, Ground-state cooling of levitated magnets in low-frequency traps, Phys. Rev. Lett. 126, 193602 (2021).
- J. Hofer and M. Aspelmeyer, Analytic solutions to the maxwell–london equations and levitation force for a superconducting sphere in a quadrupole field, Physica Scripta 94, 125508 (2019).
- M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
- A. A. Clerk, S. M. Girvin, and A. D. Stone, Quantum-limited measurement and information in mesoscopic detectors, Phys. Rev. B 67, 147206 (2003).
- E. Il’ichev and Y. S. Greenberg, Flux qubit as a sensor of magnetic flux, Europhysics Letters 77, 58005 (2007).
Collections
Sign up for free to add this paper to one or more collections.