Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Floquet Flux Attachment in Cold Atomic Systems (2401.08754v2)

Published 16 Jan 2024 in quant-ph, cond-mat.quant-gas, and cond-mat.str-el

Abstract: Flux attachment provides a powerful conceptual framework for understanding certain forms of topological order, including most notably the fractional quantum Hall effect. Despite its ubiquitous use as a theoretical tool, directly realizing flux attachment in a microscopic setting remains an open challenge. Here, we propose a simple approach to realizing flux attachment in a periodically-driven (Floquet) system of either spins or hard-core bosons. We demonstrate that such a system naturally realizes correlated hopping interactions and provides a sharp connection between such interactions and flux attachment. Starting with a simple, nearest-neighbor, free boson model, we find evidence -- from both a coupled wire analysis and large-scale density matrix renormalization group simulations -- that Floquet flux attachment stabilizes the bosonic integer quantum Hall state at $1/4$ filling (on a square lattice), and the Halperin-221 fractional quantum Hall state at $1/6$ filling (on a honeycomb lattice). At $1/2$ filling on the square lattice, time-reversal symmetry is instead spontaneously broken and bosonic integer quantum Hall states with opposite Hall conductances are degenerate. Finally, we propose an optical-lattice-based implementation of our model on a square lattice and discuss prospects for adiabatic preparation as well as effects of Floquet heating.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. Xie Chen, Zheng-Cheng Gu,  and Xiao-Gang Wen, “Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order,” Phys. Rev. B 82, 155138 (2010).
  2. Yuan-Ming Lu and Ashvin Vishwanath, “Theory and classification of interacting integer topological phases in two dimensions: A chern-simons approach,” Phys. Rev. B 86, 125119 (2012).
  3. D. C. Tsui, H. L. Stormer,  and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Phys. Rev. Lett. 48, 1559–1562 (1982).
  4. R. B. Laughlin, “Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations,” Phys. Rev. Lett. 50, 1395–1398 (1983).
  5. F. D. M. Haldane, “Nonlinear field theory of large-spin heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis néel state,” Phys. Rev. Lett. 50, 1153–1156 (1983).
  6. Frank Pollmann, Ari M. Turner, Erez Berg,  and Masaki Oshikawa, “Entanglement spectrum of a topological phase in one dimension,” Phys. Rev. B 81, 064439 (2010).
  7. Ashvin Vishwanath and T. Senthil, “Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect,” Phys. Rev. X 3, 011016 (2013).
  8. As well as putative spin liquid phases of frustrated magnets.
  9. S. M. Girvin and A. H. MacDonald, “Off-diagonal long-range order, oblique confinement, and the fractional quantum hall effect,” Phys. Rev. Lett. 58, 1252–1255 (1987).
  10. S. C. Zhang, T. H. Hansson,  and S. Kivelson, “Effective-field-theory model for the fractional quantum hall effect,” Phys. Rev. Lett. 62, 82–85 (1989).
  11. J. K. Jain, “Composite-fermion approach for the fractional quantum hall effect,” Phys. Rev. Lett. 63, 199–202 (1989).
  12. Shou Cheng Zhang, “The chern–simons–landau–ginzburg theory of the fractional quantum hall effect,” International Journal of Modern Physics B 6, 25–58 (1992).
  13. Sebastian Greschner, Luis Santos,  and Dario Poletti, “Exploring Unconventional Hubbard Models with Doubly Modulated Lattice Gases,” Physical Review Letters 113, 183002 (2014a).
  14. Marco Di Liberto, Charles E Creffield, GI Japaridze,  and C Morais Smith, “Quantum simulation of correlated-hopping models with fermions in optical lattices,” Physical Review A 89, 013624 (2014).
  15. Ana Hudomal, Ivana Vasić, Nicolas Regnault,  and Zlatko Papić, “Quantum scars of bosons with correlated hopping,” Communications Physics 3, 99 (2020).
  16. Vincent Lienhard, Pascal Scholl, Sebastian Weber, Daniel Barredo, Sylvain de Léséleuc, Rukmani Bai, Nicolai Lang, Michael Fleischhauer, Hans Peter Büchler, Thierry Lahaye, et al., “Realization of a density-dependent peierls phase in a synthetic, spin-orbit coupled rydberg system,” Physical Review X 10, 021031 (2020).
  17. Anjun Chu, Asier Piñeiro Orioli, Diego Barberena, James K Thompson,  and Ana Maria Rey, “Photon-mediated correlated hopping in a synthetic ladder,” Physical Review Research 5, L022034 (2023).
  18. Yin-Chen He, Subhro Bhattacharjee, R. Moessner,  and Frank Pollmann, “Bosonic integer quantum hall effect in an interacting lattice model,” Phys. Rev. Lett. 115, 116803 (2015a).
  19. Yohei Fuji, Yin-Chen He, Subhro Bhattacharjee,  and Frank Pollmann, “Bridging coupled wires and lattice hamiltonian for two-component bosonic quantum hall states,” Phys. Rev. B 93, 195143 (2016).
  20. Wanli Liu, Zhiyu Dong, Zhihuan Dong, Chenrong Liu, Wei Yan,  and Yan Chen, “Bosonic Integer Quantum Hall States without Landau Levels on Square Lattice,” Physical Review B 99, 085305 (2019), arxiv:1712.01212 .
  21. Nicolas Regnault and B Andrei Bernevig, “Fractional chern insulator,” Physical Review X 1, 021014 (2011).
  22. Ganpathy Murthy and R Shankar, “Hamiltonian theory of fractionally filled chern bands,” Physical Review B 86, 195146 (2012).
  23. YX Zhao, Cong Chen, Xian-Lei Sheng,  and Shengyuan A Yang, “Switching spinless and spinful topological phases with projective p t symmetry,” Physical Review Letters 126, 196402 (2021).
  24. Gang Chen, Andrew Essin,  and Michael Hermele, “Majorana spin liquids and projective realization of su (2) spin symmetry,” Physical Review B 85, 094418 (2012).
  25. Zhao Liu and Emil J Bergholtz, ‘‘Recent developments in fractional chern insulators,” arXiv preprint arXiv:2208.08449  (2022).
  26. Yu-Ping Lin, Chunxiao Liu,  and Joel E Moore, “Complex magnetic and spatial symmetry breaking from correlations in kagome flat bands,” arXiv preprint arXiv:2307.11810  (2023).
  27. S. Greschner, G. Sun, D. Poletti,  and L. Santos, “Density-dependent synthetic gauge fields using periodically modulated interactions,” Phys. Rev. Lett. 113, 215303 (2014b).
  28. D. H. Dunlap and V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Physical Review B 34, 3625–3633 (1986).
  29. M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen,  and I. Bloch, “Experimental realization of strong effective magnetic fields in an optical lattice,” Phys. Rev. Lett. 107, 255301 (2011).
  30. J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock,  and P. Windpassinger, “Tunable Gauge Potential for Neutral and Spinless Particles in Driven Optical Lattices,” Physical Review Letters 108, 225304 (2012).
  31. K. Jiménez-García, L. J. LeBlanc, R. A. Williams, M. C. Beeler, A. R. Perry,  and I. B. Spielman, “Peierls Substitution in an Engineered Lattice Potential,” Physical Review Letters 108, 225303 (2012).
  32. Johannes Hauschild and Frank Pollmann, “Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy),” SciPost Phys. Lect. Notes , 5 (2018).
  33. Julian Léonard, Sooshin Kim, Joyce Kwan, Perrin Segura, Fabian Grusdt, Cécile Repellin, Nathan Goldman,  and Markus Greiner, “Realization of a fractional quantum Hall state with ultracold atoms,”  (2022), 10.48550/arXiv.2210.10919, arxiv:2210.10919 [cond-mat, physics:quant-ph] .
  34. Yin-Chen He, Subhro Bhattacharjee, Frank Pollmann,  and R. Moessner, “Kagome chiral spin liquid as a gauged u⁢(1)𝑢1u(1)italic_u ( 1 ) symmetry protected topological phase,” Phys. Rev. Lett. 115, 267209 (2015b).
  35. M Barkeshli, NY Yao,  and CR Laumann, “Continuous preparation of a fractional chern insulator,” Physical review letters 115, 026802 (2015).
  36. Johannes Motruk and Frank Pollmann, “Phase transitions and adiabatic preparation of a fractional chern insulator in a boson cold-atom model,” Physical Review B 96, 165107 (2017).
  37. Nathan Goldman, G Juzeliūnas, Patrik Öhberg,  and Ian B Spielman, “Light-induced gauge fields for ultracold atoms,” Reports on Progress in Physics 77, 126401 (2014).
  38. Jean Dalibard, ‘‘Introduction to the physics of artificial gauge fields,” Quantum Matter at Ultralow Temperatures  (2015).
  39. Hui Zhai, “Degenerate quantum gases with spin–orbit coupling: a review,” Reports on Progress in Physics 78, 026001 (2015).
  40. Nathan Goldman, Jan C Budich,  and Peter Zoller, “Topological quantum matter with ultracold gases in optical lattices,” Nature Physics 12, 639–645 (2016).
  41. NR Cooper, J Dalibard,  and IB Spielman, “Topological bands for ultracold atoms,” Reviews of modern physics 91, 015005 (2019).
  42. Norman Y Yao, Alexey V Gorshkov, Chris R Laumann, Andreas M Läuchli, Jun Ye,  and Mikhail D Lukin, “Realizing fractional chern insulators in dipolar spin systems,” Physical review letters 110, 185302 (2013).
  43. Alexandre Cesa and John Martin, “Artificial abelian gauge potentials induced by dipole-dipole interactions between rydberg atoms,” Physical Review A 88, 062703 (2013).
  44. Xiaoling Wu, Fan Yang, Shuo Yang, Klaus Mølmer, Thomas Pohl, Meng Khoon Tey,  and Li You, “Manipulating synthetic gauge fluxes via multicolor dressing of rydberg-atom arrays,” Physical Review Research 4, L032046 (2022).
  45. Alessio Celi, Pietro Massignan, Julius Ruseckas, Nathan Goldman, Ian B Spielman, G Juzeliūnas,  and M Lewenstein, “Synthetic gauge fields in synthetic dimensions,” Physical review letters 112, 043001 (2014).
  46. T. Senthil, Leon Balents, Subir Sachdev, Ashvin Vishwanath,  and Matthew P. A. Fisher, “Quantum criticality beyond the landau-ginzburg-wilson paradigm,” Phys. Rev. B 70, 144407 (2004).
  47. T. Senthil and Michael Levin, “Integer quantum hall effect for bosons,” Phys. Rev. Lett. 110, 046801 (2013).
  48. Cenke Xu and T. Senthil, “Wave functions of bosonic symmetry protected topological phases,” Phys. Rev. B 87, 174412 (2013).
  49. Zheng-Xin Liu, Zheng-Cheng Gu,  and Xiao-Gang Wen, “Microscopic realization of two-dimensional bosonic topological insulators,” Phys. Rev. Lett. 113, 267206 (2014).
  50. Nathan Goldman and Jean Dalibard, “Periodically driven quantum systems: effective hamiltonians and engineered gauge fields,” Physical review X 4, 031027 (2014).
  51. Marin Bukov, Markus Heyl, David A. Huse,  and Anatoli Polkovnikov, “Heating and many-body resonances in a periodically driven two-band system,” Physical Review B 93, 155132 (2016).
  52. Tomotaka Kuwahara, Takashi Mori,  and Keiji Saito, “Floquet–magnus theory and generic transient dynamics in periodically driven many-body quantum systems,” Annals of Physics 367, 96–124 (2016).
  53. Takashi Mori, Tomotaka Kuwahara,  and Keiji Saito, “Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems,” Physical review letters 116, 120401 (2016).
  54. Dmitry Abanin, Wojciech De Roeck, Wen Wei Ho,  and François Huveneers, “A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems,” Communications in Mathematical Physics 354, 809–827 (2017).
  55. Simon A Weidinger and Michael Knap, “Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system,” Scientific reports 7, 45382 (2017).
  56. Francisco Machado, Gregory D Kahanamoku-Meyer, Dominic V Else, Chetan Nayak,  and Norman Y Yao, “Exponentially slow heating in short and long-range interacting floquet systems,” Physical Review Research 1, 033202 (2019).
  57. Yohei Fuji and Akira Furusaki, “Quantum hall hierarchy from coupled wires,” Phys. Rev. B 99, 035130 (2019).
  58. For additional details on the perturbative coupled-wire analysis and numerical simulations, please see the Supplementary Materials.
  59. Xiao-Gang Wen, “Topological orders and edge excitations in fractional quantum hall states,” Adv. Phys. 44, 405–473 (1995).
  60. R. B. Laughlin, ‘‘Quantized hall conductivity in two dimensions,” Phys. Rev. B 23, 5632–5633 (1981).
  61. Yin-Chen He, D. N. Sheng,  and Yan Chen, “Obtaining topological degenerate ground states by the density matrix renormalization group,” Phys. Rev. B 89, 075110 (2014).
  62. A Sterdyniak, Nigel R Cooper,  and N Regnault, “Bosonic integer quantum hall effect in optical flux lattices,” Physical Review Letters 115, 116802 (2015).
  63. Yin-Chen He, Fabian Grusdt, Adam Kaufman, Markus Greiner,  and Ashvin Vishwanath, “Realizing and adiabatically preparing bosonic integer and fractional quantum hall states in optical lattices,” Physical Review B 96, 201103 (2017).
  64. Jean Dalibard, Fabrice Gerbier, Gediminas Juzeliūnas,  and Patrik Öhberg, “Colloquium: Artificial gauge potentials for neutral atoms,” Reviews of Modern Physics 83, 1523 (2011).
  65. Monika Aidelsburger, Michael Lohse, Christian Schweizer, Marcos Atala, Julio T Barreiro, Sylvain Nascimbène, NR Cooper, Immanuel Bloch,  and Nathan Goldman, “Measuring the chern number of hofstadter bands with ultracold bosonic atoms,” Nature Physics 11, 162–166 (2015a).
  66. M Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko, Tim Menke, Dan Borgnia, Philipp M Preiss, Fabian Grusdt, Adam M Kaufman,  and Markus Greiner, “Microscopy of the interacting harper–hofstadter model in the two-body limit,” Nature 546, 519–523 (2017).
  67. Luca Barbiero, Christian Schweizer, Monika Aidelsburger, Eugene Demler, Nathan Goldman,  and Fabian Grusdt, “Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to z2 lattice gauge theories,” Science advances 5, eaav7444 (2019).
  68. Alexander Impertro, Simon Karch, Julian F. Wienand, SeungJung Huh, Christian Schweizer, Immanuel Bloch,  and Monika Aidelsburger, “Local readout and control of current and kinetic energy operators in optical lattices,”   (2023), arXiv:2312.13268 [cond-mat.quant-gas] .
  69. Dieter Jaksch and Peter Zoller, ‘‘Creation of effective magnetic fields in optical lattices: the hofstadter butterfly for cold neutral atoms,” New Journal of Physics 5, 56 (2003).
  70. Monika Aidelsburger, Michael Lohse, C Schweizer, Marcos Atala, Julio T Barreiro, S Nascimbene, NR Cooper, Immanuel Bloch,  and N Goldman, “Measuring the chern number of hofstadter bands with ultracold bosonic atoms,” Nature Physics 11, 162–166 (2015b).
  71. Hirokazu Miyake, Georgios A Siviloglou, Colin J Kennedy, William Cody Burton,  and Wolfgang Ketterle, “Realizing the harper hamiltonian with laser-assisted tunneling in optical lattices,” Physical review letters 111, 185302 (2013).
  72. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,  and I. Bloch, “Realization of the hofstadter hamiltonian with ultracold atoms in optical lattices,” Phys. Rev. Lett. 111, 185301 (2013).
  73. Thierry Giamarchi, Quantum Physics in One Dimension (Oxford University Press, New York, 2003).
  74. C. L. Kane, Ranjan Mukhopadhyay,  and T. C. Lubensky, “Fractional quantum hall effect in an array of quantum wires,” Phys. Rev. Lett. 88, 036401 (2002).
  75. Jeffrey C. Y. Teo and C. L. Kane, “From luttinger liquid to non-abelian quantum hall states,” Phys. Rev. B 89, 085101 (2014).
  76. David F. Mross, Jason Alicea,  and Olexei I. Motrunich, “Symmetry and duality in bosonization of two-dimensional dirac fermions,” Phys. Rev. X 7, 041016 (2017).
  77. Monika Aidelsburger, Artificial gauge fields with ultracold atoms in optical lattices (Springer, 2015).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com