Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the best constants of the noncommutative Littlewood-Paley-Stein inequalities (2401.08731v2)

Published 16 Jan 2024 in math.OA and math.FA

Abstract: Let $1<p<\infty$. Let $\{T_t\}_{t\>0}$ be a noncommutative symmetric diffusion semigroup on a semifinite von Neumann algebra $\mathcal{M}$, and let ${P_t}{t>0}$ be its associated subordinated Poisson semigroup. The celebrated noncommutative Littlewood-Paley-Stein inequality asserts that for any $x\in L_p(\mathcal{M})$, \begin{equation*} \alpha_p{-1}|x|{p}\le |x|{p,P}\le \beta_p |x|{p}, \end{equation*} where $|\cdot|{p,P}$ is the $L_p(\mathcal{M})$-norm of square functions associated with ${P_t}{t>0}$, and $\alpha_p, \beta_p$ are the best constants only depending on $p$. We show that as $p\to \infty$, $$ \beta_p\lesssim p, $$ and $p$ is the optimal possible order of $\beta_p$ as well. We also obtain some lower and upper bounds of $\alpha_p$ and $\beta_p$ in the other cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. M. A. Akcoglu. A pointwise ergodic theorem in Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces. Canadian J. Math., (5):1075–1082, 1975.
  2. C. Anantharaman-Delaroche. On ergodic theorems for free group actions on noncommutative spaces. Probab. Theory Related Fields, 135(4):520–546, 2006.
  3. C. Arhancet. Dilations of semigroups on von Neumann algebras and noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. J. Funct. Anal., 276(7):2279–2314, 2019.
  4. J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin-New York, 1976.
  5. Banach space operators with a bounded H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT functional calculus. J. Austral. Math. Soc. Ser. A, 60(1):51–89, 1996.
  6. E. B. Davies. One-parameter semigroups. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980.
  7. J. Diestel and J. J. Uhl. Vector measures. American Mathematical Society, Providence, RI, 1977.
  8. U. Haagerup and M. Musat. Factorization and dilation problems for completely positive maps on von Neumann algebras. Comm. Math. Phys., 303(2):555–594, 2011.
  9. M. Haase. The Functional Calculus of Sectorial Operators. Birkhäuser Basel, 1st edition, 2005.
  10. Pointwise convergence of noncommutative fourier series. arXiv preprint arXiv:1908.00240. To appear in Mem. Amer. Math. Soc.
  11. H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT functional calculus and square functions on noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Astérisque, (305):vi+138, 2006.
  12. Noncommutative diffusion semigroups and free probability. In preparation.
  13. M. Junge and Q. Xu. On the best constants in some non-commutative martingale inequalities. Bull. London Math. Soc., 37(4):243–253, 2005.
  14. M. Junge and Q. Xu. Noncommutative maximal ergodic theorems. J. Amer. Math. Soc., 20(2):385–439, 2007.
  15. U. Krengel. Ergodic Theory. De Guyter, 1985.
  16. B. Kümmerer. Markov dilations on W∗superscript𝑊normal-∗W^{\ast}italic_W start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. J. Funct. Anal., 63(2):139–177, 1985.
  17. T. Mei and J. Parcet. Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities. Int. Math. Res. Not. IMRN, (8):1433–1487, 2009.
  18. G. Pisier. Non-commutative vector valued Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces and completely p𝑝pitalic_p-summing maps. Astérisque, (247):vi+131, 1998.
  19. G. Pisier and Q. Xu. Non-commutative martingale inequalities. Comm. Math. Phys., 189(3):667–698, 1997.
  20. G. Pisier and Q. Xu. Non-commutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. In Handbook of the geometry of Banach spaces, Vol. 2, pages 1459–1517. North-Holland, Amsterdam, 2003.
  21. N. Randrianantoanina. Square function inequalities for non-commutative martingales. Israel J. Math., 140:333–365, 2004.
  22. E. M. Stein. Topics in harmonic analysis related to the Littlewood-Paley theory. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970.
  23. Q. Xu. Holomorphic functional calculus and vector-valued littlewood-paley-stein theory for semigroups. arXiv preprint arXiv:2105.12175. To appear in J. Eur. Math. Soc.
  24. Q. Xu. Optimal orders of the best constants in the Littlewood-Paley inequalities. J. Funct. Anal., 283(6):Paper No. 109570, 37, 2022.
  25. Z. Xu and H. Zhang. From the Littlewood-Paley-Stein inequality to the Burkholder-Gundy inequality. Trans. Amer. Math. Soc., 376(1):371–389, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com