On the best constants of the noncommutative Littlewood-Paley-Stein inequalities (2401.08731v2)
Abstract: Let $1<p<\infty$. Let $\{T_t\}_{t\>0}$ be a noncommutative symmetric diffusion semigroup on a semifinite von Neumann algebra $\mathcal{M}$, and let ${P_t}{t>0}$ be its associated subordinated Poisson semigroup. The celebrated noncommutative Littlewood-Paley-Stein inequality asserts that for any $x\in L_p(\mathcal{M})$, \begin{equation*} \alpha_p{-1}|x|{p}\le |x|{p,P}\le \beta_p |x|{p}, \end{equation*} where $|\cdot|{p,P}$ is the $L_p(\mathcal{M})$-norm of square functions associated with ${P_t}{t>0}$, and $\alpha_p, \beta_p$ are the best constants only depending on $p$. We show that as $p\to \infty$, $$ \beta_p\lesssim p, $$ and $p$ is the optimal possible order of $\beta_p$ as well. We also obtain some lower and upper bounds of $\alpha_p$ and $\beta_p$ in the other cases.
- M. A. Akcoglu. A pointwise ergodic theorem in Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces. Canadian J. Math., (5):1075–1082, 1975.
- C. Anantharaman-Delaroche. On ergodic theorems for free group actions on noncommutative spaces. Probab. Theory Related Fields, 135(4):520–546, 2006.
- C. Arhancet. Dilations of semigroups on von Neumann algebras and noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. J. Funct. Anal., 276(7):2279–2314, 2019.
- J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin-New York, 1976.
- Banach space operators with a bounded H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT functional calculus. J. Austral. Math. Soc. Ser. A, 60(1):51–89, 1996.
- E. B. Davies. One-parameter semigroups. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980.
- J. Diestel and J. J. Uhl. Vector measures. American Mathematical Society, Providence, RI, 1977.
- U. Haagerup and M. Musat. Factorization and dilation problems for completely positive maps on von Neumann algebras. Comm. Math. Phys., 303(2):555–594, 2011.
- M. Haase. The Functional Calculus of Sectorial Operators. Birkhäuser Basel, 1st edition, 2005.
- Pointwise convergence of noncommutative fourier series. arXiv preprint arXiv:1908.00240. To appear in Mem. Amer. Math. Soc.
- H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT functional calculus and square functions on noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Astérisque, (305):vi+138, 2006.
- Noncommutative diffusion semigroups and free probability. In preparation.
- M. Junge and Q. Xu. On the best constants in some non-commutative martingale inequalities. Bull. London Math. Soc., 37(4):243–253, 2005.
- M. Junge and Q. Xu. Noncommutative maximal ergodic theorems. J. Amer. Math. Soc., 20(2):385–439, 2007.
- U. Krengel. Ergodic Theory. De Guyter, 1985.
- B. Kümmerer. Markov dilations on W∗superscript𝑊normal-∗W^{\ast}italic_W start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras. J. Funct. Anal., 63(2):139–177, 1985.
- T. Mei and J. Parcet. Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities. Int. Math. Res. Not. IMRN, (8):1433–1487, 2009.
- G. Pisier. Non-commutative vector valued Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces and completely p𝑝pitalic_p-summing maps. Astérisque, (247):vi+131, 1998.
- G. Pisier and Q. Xu. Non-commutative martingale inequalities. Comm. Math. Phys., 189(3):667–698, 1997.
- G. Pisier and Q. Xu. Non-commutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. In Handbook of the geometry of Banach spaces, Vol. 2, pages 1459–1517. North-Holland, Amsterdam, 2003.
- N. Randrianantoanina. Square function inequalities for non-commutative martingales. Israel J. Math., 140:333–365, 2004.
- E. M. Stein. Topics in harmonic analysis related to the Littlewood-Paley theory. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970.
- Q. Xu. Holomorphic functional calculus and vector-valued littlewood-paley-stein theory for semigroups. arXiv preprint arXiv:2105.12175. To appear in J. Eur. Math. Soc.
- Q. Xu. Optimal orders of the best constants in the Littlewood-Paley inequalities. J. Funct. Anal., 283(6):Paper No. 109570, 37, 2022.
- Z. Xu and H. Zhang. From the Littlewood-Paley-Stein inequality to the Burkholder-Gundy inequality. Trans. Amer. Math. Soc., 376(1):371–389, 2023.