Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Completion with Hypergraphs:Sharp Thresholds and Efficient Algorithms (2401.08197v2)

Published 16 Jan 2024 in cs.LG, cs.IT, eess.SP, and math.IT

Abstract: This paper considers the problem of completing a rating matrix based on sub-sampled matrix entries as well as observed social graphs and hypergraphs. We show that there exists a \emph{sharp threshold} on the sample probability for the task of exactly completing the rating matrix -- the task is achievable when the sample probability is above the threshold, and is impossible otherwise -- demonstrating a phase transition phenomenon. The threshold can be expressed as a function of the ``quality'' of hypergraphs, enabling us to \emph{quantify} the amount of reduction in sample probability due to the exploitation of hypergraphs. This also highlights the usefulness of hypergraphs in the matrix completion problem. En route to discovering the sharp threshold, we develop a computationally efficient matrix completion algorithm that effectively exploits the observed graphs and hypergraphs. Theoretical analyses show that our algorithm succeeds with high probability as long as the sample probability exceeds the aforementioned threshold, and this theoretical result is further validated by synthetic experiments. Moreover, our experiments on a real social network dataset (with both graphs and hypergraphs) show that our algorithm outperforms other state-of-the-art matrix completion algorithms.

Summary

We haven't generated a summary for this paper yet.