Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias-Compensated State of Charge and State of Health Joint Estimation for Lithium Iron Phosphate Batteries (2401.08136v2)

Published 16 Jan 2024 in eess.SY and cs.SY

Abstract: Accurate estimation of the state of charge (SOC) and state of health (SOH) is crucial for the safe and reliable operation of batteries. Voltage measurement bias highly affects state estimation accuracy, especially in Lithium Iron Phosphate (LFP) batteries, which are susceptible due to their flat open-circuit voltage (OCV) curves. This work introduces a bias-compensated algorithm to reliably estimate the SOC and SOH of LFP batteries under the influence of voltage measurement bias. Specifically, SOC and SOH are estimated using the Dual Extended Kalman Filter (DEKF) in the high-slope SOC range, where voltage measurement bias effects are weak. Besides, the voltage measurement biases estimated in the low-slope SOC regions are compensated in the following joint estimation of SOC and SOH to enhance the state estimation accuracy further. Experimental results indicate that the proposed algorithm significantly outperforms the traditional method, which does not consider biases under different temperatures and aging conditions. Additionally, the bias-compensated algorithm can achieve low estimation errors of below 1.5% for SOC and 2% for SOH, even with a 30mV voltage measurement bias. Finally, even if the voltage measurement biases change in operation, the proposed algorithm can remain robust and keep the estimated errors of states around 2%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. G. E. Blomgren, “The development and future of lithium ion batteries,” J. Electrochem. Soc., vol. 164, no. 1, pp. A5019–A5025, 2017.
  2. C. Truchot, M. Dubarry, and B. Y. Liaw, “State-of-charge estimation and uncertainty for lithium-ion battery strings,” Applied Energy, vol. 119, pp. 218–227, 2014.
  3. X. Liu, J. Li, Z. Yao, Z. Wang, R. Si, and Y. Diao, “Research on battery SOH estimation algorithm of energy storage frequency modulation system,” Energy Reports, vol. 8, pp. 217–223, May 2022.
  4. R. Xiong, Y. Pan, W. Shen, H. Li, and F. Sun, “Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives,” Renewable and Sustainable Energy Reviews, vol. 131, p. 110048, Oct. 2020.
  5. X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit models for li-ion batteries,” Journal of Power Sources, vol. 198, pp. 359–367, Jan. 2012.
  6. R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, “Electrochemical model based observer design for a lithium-ion battery,” IEEE Trans. Contr. Syst. Technol., vol. 21, no. 2, pp. 289–301, Mar. 2013.
  7. S. Shen, M. Sadoughi, X. Chen, M. Hong, and C. Hu, “A deep learning method for online capacity estimation of lithium-ion batteries,” Journal of Energy Storage, vol. 25, p. 100817, Oct. 2019.
  8. K. Liu, Y. Shang, Q. Ouyang, and W. D. Widanage, “A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery,” IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3170–3180, 2021.
  9. K. S. Ng, C.-S. Moo, Y.-P. Chen, and Y.-C. Hsieh, “Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries,” Applied Energy, vol. 86, no. 9, pp. 1506–1511, Sep. 2009.
  10. G. L. Plett, “Extended kalman filtering for battery management systems of LiPB-based HEV battery packs,” Journal of Power Sources, vol. 134, no. 2, pp. 277–292, Aug. 2004.
  11. Z. Song, J. Hou, X. Li, X. Wu, X. Hu, H. Hofmann, and J. Sun, “The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection,” Energy, vol. 193, p. 116732, Feb. 2020.
  12. W. He, N. Williard, C. Chen, and M. Pecht, “State of charge estimation for electric vehicle batteries using unscented kalman filtering,” Microelectronics Reliability, vol. 53, no. 6, pp. 840–847, Jun. 2013.
  13. Hongwen He, Rui Xiong, Xiaowei Zhang, Fengchun Sun, and JinXin Fan, “State-of-charge estimation of the lithium-ion battery using an adaptive extended kalman filter based on an improved thevenin model,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1461–1469, May 2011.
  14. C. Hu, B. D. Youn, and J. Chung, “A multiscale framework with extended kalman filter for lithium-ion battery SOC and capacity estimation,” Applied Energy, vol. 92, pp. 694–704, Apr. 2012.
  15. R. Xiong, F. Sun, Z. Chen, and H. He, “A data-driven multi-scale extended kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles,” Applied Energy, vol. 113, pp. 463–476, Jan. 2014.
  16. X. Hu, H. Yuan, C. Zou, Z. Li, and L. Zhang, “Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10 319–10 329, Nov. 2018.
  17. Q. Lai, S. Jangra, H. J. Ahn, G. Kim, W. T. Joe, and X. Lin, “Analytical sensitivity analysis for battery electrochemical parameters,” in 2019 American Control Conference (ACC), Jul. 2019, pp. 890–896.
  18. A. Sharma and H. K. Fathy, “Fisher identifiability analysis for a periodically-excited equivalent-circuit lithium-ion battery model,” in 2014 American Control Conference, Jun. 2014, pp. 274–280.
  19. L. L. Scharf and L. McWhorter, “Geometry of the cramer-rao bound,” Signal Processing, vol. 31, no. 3, pp. 301–311, 1993.
  20. X. Lin, “A data selection strategy for real-time estimation of battery parameters,” in 2018 Annual American Control Conference (ACC), Jun. 2018, pp. 2276–2281.
  21. X. Lin, “On the analytic accuracy of battery SOC, capacity and resistance estimation,” in 2016 American Control Conference (ACC), Jul. 2016, pp. 4006–4011.
  22. Z. Song, H. Hofmann, X. Lin, X. Han, and J. Hou, “Parameter identification of lithium-ion battery pack for different applications based on cramer-rao bound analysis and experimental study,” Applied Energy, vol. 231, pp. 1307–1318, Dec. 2018.
  23. Z. Song, H. Wang, J. Hou, H. F. Hofmann, and J. Sun, “Combined state and parameter estimation of lithium-ion battery with active current injection,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4439–4447, Apr. 2020.
  24. Y. Zheng, M. Ouyang, X. Han, L. Lu, and J. Li, “Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles,” Journal of Power Sources, vol. 377, pp. 161–188, 2018.
  25. Y. Zheng, M. Ouyang, L. Lu, J. Li, X. Han, L. Xu, H. Ma, T. A. Dollmeyer, and V. Freyermuth, “Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model,” Applied Energy, vol. 111, pp. 571–580, Nov. 2013.
  26. M.-K. Tran, A. DaCosta, A. Mevawalla, S. Panchal, and M. Fowler, “Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO, NCA,” Batteries, vol. 7, no. 3, p. 51, Jul. 2021.
  27. G. Dong, J. Wei, and Z. Chen, “Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries,” Journal of Power Sources, vol. 328, pp. 615–626, Oct. 2016.
  28. A. Vemuri, “Sensor bias fault diagnosis in a class of nonlinear systems,” IEEE Trans. Automat. Contr., vol. 45, no. 6, pp. 949–954, Jun. 2001.
  29. R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 03 1960.
  30. X. Lin, “Analytic derivation of battery SOC estimation error under sensor noises,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 2175–2180, Jul. 2017.
  31. X. Lin, “Theoretical analysis of battery SOC estimation errors under sensor bias and variance,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7138–7148, Sep. 2018.
  32. J. Zhu, Z. Sun, X. Wei, and H. Dai, “A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement,” Journal of Power Sources, vol. 274, pp. 990–1004, Jan. 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.