Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Preferences from Demonstrations in Multi-Objective Residential Energy Management (2401.07722v1)

Published 15 Jan 2024 in cs.AI

Abstract: It is often challenging for a user to articulate their preferences accurately in multi-objective decision-making problems. Demonstration-based preference inference (DemoPI) is a promising approach to mitigate this problem. Understanding the behaviours and values of energy customers is an example of a scenario where preference inference can be used to gain insights into the values of energy customers with multiple objectives, e.g. cost and comfort. In this work, we applied the state-of-art DemoPI method, i.e., the dynamic weight-based preference inference (DWPI) algorithm in a multi-objective residential energy consumption setting to infer preferences from energy consumption demonstrations by simulated users following a rule-based approach. According to our experimental results, the DWPI model achieves accurate demonstration-based preference inferring in three scenarios. These advancements enhance the usability and effectiveness of multi-objective reinforcement learning (MORL) in energy management, enabling more intuitive and user-friendly preference specifications, and opening the door for DWPI to be applied in real-world settings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.