Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rabin Games and Colourful Universal Trees (2401.07548v2)

Published 15 Jan 2024 in cs.LO, cs.DS, and cs.FL

Abstract: We provide an algorithm to solve Rabin and Streett games over graphs with $n$ vertices, $m$ edges, and $k$ colours that runs in $\tilde{O}\left(mn(k!){1+o(1)} \right)$ time and $O(nk\log k \log n)$ space, where $\tilde{O}$ hides poly-logarithmic factors. Our algorithm is an improvement by a super quadratic dependence on $k!$ from the currently best known run time of $O\left(mn2(k!){2+o(1)}\right)$, obtained by converting a Rabin game into a parity game, while simultaneously improving its exponential space requirement. Our main technical ingredient is a characterisation of progress measures for Rabin games using \emph{colourful trees} and a combinatorial construction of succinctly-represented, universal colourful trees. Colourful universal trees are generalisations of universal trees used by Jurdzi\'{n}ski and Lazi\'{c} (2017) to solve parity games, as well as of Rabin progress measures of Klarlund and Kozen (1991). Our algorithm for Rabin games is a progress measure lifting algorithm where the lifting is performed on succinct, colourful, universal trees.

Citations (1)

Summary

We haven't generated a summary for this paper yet.