Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alternating Bias Assisted Annealing of Amorphous Oxide Tunnel Junctions (2401.07415v4)

Published 15 Jan 2024 in physics.app-ph, quant-ph, cond-mat.mtrl-sci, and cond-mat.supr-con

Abstract: We demonstrate a transformational technique for controllably tuning the electrical properties of fabricated thermally oxidized amorphous aluminum-oxide tunnel junctions. Using conventional test equipment to apply an alternating bias to a heated tunnel barrier, giant increases in the room temperature resistance, greater than 70%, can be achieved. The rate of resistance change is shown to be strongly temperature-dependent, and is independent of junction size in the sub-micron regime. In order to measure their tunneling properties at mK temperatures, we characterized transmon qubit junctions treated with this alternating-bias assisted annealing (ABAA) technique. The measured frequencies follow the Ambegaokar-Baratoff relation between the shifted resistance and critical current. Further, these studies show a reduction of junction-contributed loss on the order of $\approx 2 \times10{-6}$, along with a significant reduction in resonant- and off-resonant-two level system defects when compared to untreated samples. Imaging with high-resolution TEM shows that the barrier is still predominantly amorphous with a more uniform distribution of aluminum coordination across the barrier relative to untreated junctions. This new approach is expected to be widely applicable to a broad range of devices that rely on amorphous aluminum oxide, as well as the many other metal-insulator-metal structures used in modern electronics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. B.D. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters 1, 251–253 (1962).
  2. J. Clarke, The SQUID handbook Vol 1 Fundamentals and technology of SQUIDs and SQUID systems (Wiley VCH, Germany, 2004).
  3. M. H. Devoret, Quantum fluctuations in electrical circuits (Edition de Physique, France, 1997).
  4. Y. Nakamura, Yu. A. Pashkin,  and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-cooper-pair box,” Nature 398, 786–788 (1999).
  5. Manuel A. Castellanos-Beltran, Kent D. Irwin, Leila R. Vale, Gene C. Hilton,  and Konrad W. Lehnert, “Bandwidth and dynamic range of a widely tunable josephson parametric amplifier,” IEEE Transactions on Applied Superconductivity 19, 944–947 (2009).
  6. C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver,  and I. Siddiqi, “A near–quantum-limited josephson traveling-wave parametric amplifier,” Science 350, 307–310 (2015), https://www.science.org/doi/pdf/10.1126/science.aaa8525 .
  7. K.K. Likharev and V.K. Semenov, “Rsfq logic/memory family: a new josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Transactions on Applied Superconductivity 1, 3–28 (1991).
  8. Jian-Gang (Jimmy) Zhu and Chando Park, “Magnetic tunnel junctions,” Materials Today 9, 36–45 (2006).
  9. W. H. Rippard, A. C. Perrella, F. J. Albert,  and R. A. Buhrman, “Ultrathin aluminum oxide tunnel barriers,” Phys. Rev. Lett. 88, 046805 (2002).
  10. J. J. O’Dwyer, “Current‐Voltage Characteristics of Dielectric Films,” Journal of Applied Physics 37, 599–601 (2004), https://pubs.aip.org/aip/jap/article-pdf/37/2/599/7938519/599_1_online.pdf .
  11. N Cabrera and N F Mott, “Theory of the oxidation of metals,” Reports on Progress in Physics 12, 163 (1949).
  12. Xingfan Zhang, Peiru Zheng, Yingjie Ma, Yanyan Jiang,  and Hui Li, “Atomic-scale understanding of oxidation mechanisms of materials by computational approaches: A review,” Materials& Design 217, 110605 (2022a).
  13. J. Koch, M.Y. Terri, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin,  and R.J. Schoelkopf, “Charge-insensitive qubit design derived from the cooper pair box,” Phys. Rev. A 76, 042319 (2007).
  14. Nandini Muthusubramanian, Matvey Finkel, Pim Duivestein, Christos Zachariadis, Sean L. M. van der Meer, Hendrik M. Veen, Marc W. Beekman, Thijs Stavenga, Alessandro Bruno,  and Leonardo DiCarlo, “Wafer-scale uniformity of dolan-bridge and bridgeless manhattan-style josephson junctions for superconducting quantum processors,” Quantum Science and Technology  (2023), 10.1088/2058-9565/ad199c.
  15. Lunjie Zeng, Dung Trung Tran, Cheuk-Wai Tai, Gunnar Svensson,  and Eva Olsson, “Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions,” Scientific Reports 6, 29679 (2016).
  16. Alexander Bilmes, Alexander K Händel, Serhii Volosheniuk, Alexey V Ustinov,  and Jürgen Lisenfeld, “In-situ bandaged josephson junctions for superconducting quantum processors,” Superconductor Science and Technology 34, 125011 (2021).
  17. J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, et al., “Decoherence in josephson qubits from dielectric loss,” Phys. Rev. Lett. 95, 210503 (2005).
  18. Steffen Schlör, Jürgen Lisenfeld, Clemens Müller, Alexander Bilmes, Andre Schneider, David P. Pappas, Alexey V. Ustinov,  and Martin Weides, “Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators,” Phys. Rev. Lett. 123, 190502 (2019).
  19. Zhijie Xu, Kevin M. Rosso,  and Stephen Bruemmer, “Metal oxidation kinetics and the transition from thin to thick films,” Phys. Chem. Chem. Phys. 14, 14534–14539 (2012).
  20. Na Cai, Guangwen Zhou, Kathrin Müller,  and David E. Starr, “Temperature and pressure dependent Mott potentials and their influence on self-limiting oxide film growth,” Applied Physics Letters 101, 171605 (2012), https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.4764552/14257769/171605_1_online.pdf .
  21. William H. Mallison, “Dependence of Critical Current Density on Oxygen Exposure in Nb-AlOx-Nb Tunnel Junctions,” IEEE Transactions on Applied Superconductivity 5, 26–30 (1995).
  22. Chang-Eun Kim, Keith G. Ray,  and Vincenzo Lordi, “A density-functional theory study of the Al/AlOx/Al tunnel junction,” Journal of Applied Physics 128, 155102 (2020), https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/5.0020292/14113892/155102_1_online.pdf .
  23. M. J. Cyster, J. S. Smith, N. Vogt, G. Opletal, S. P. Russo,  and J. H. Cole, “Simulating the fabrication of aluminium oxide tunnel junctions,” npj Quantum Information 7, 12 (2021).
  24. Jared B. Hertzberg, Eric J. Zhang, Sami Rosenblatt, Easwar Magesan, John A. Smolin, Jeng-Bang Yau, Vivekananda P. Adiga, Martin Sandberg, Markus Brink, Jerry M. Chow,  and Jason S. Orcutt, “Laser-annealing josephson junctions for yielding scaled-up superconducting quantum processors,” npj Quantum Information 7, 129 (2021).
  25. Eric J. Zhang, Srikanth Srinivasan, Neereja Sundaresan, Daniela F. Bogorin, Yves Martin, Jared B. Hertzberg, John Timmerwilke, Emily J. Pritchett, Jeng-Bang Yau, Cindy Wang, William Landers, Eric P. Lewandowski, Adinath Narasgond, Sami Rosenblatt, George A. Keefe, Isaac Lauer, Mary Beth Rothwell, Douglas T. McClure, Oliver E. Dial, Jason S. Orcutt, Markus Brink,  and Jerry M. Chow, “High-performance superconducting quantum processors via laser annealing of transmon qubits,” Science Advances 8, eabi6690 (2022b), https://www.science.org/doi/pdf/10.1126/sciadv.abi6690 .
  26. Hyunseong Kim, Christian Jünger, Alexis Morvan, Edward S. Barnard, William P. Livingston, M. Virginia P. Altoé, Yosep Kim, Chengyu Song, Larry Chen, John Mark Kreikebaum, D. Frank Ogletree, David I. Santiago,  and Irfan Siddiqi, “Effects of laser-annealing on fixed-frequency superconducting qubits,” Applied Physics Letters 121, 142601 (2022), https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0102092/16484380/142601_1_online.pdf .
  27. M. K. Konkin and J. G. Adler, “Annealing effects in tunnel junctions (voltage annealing),” Journal of Applied Physics 51, 5450–5454 (2008), https://pubs.aip.org/aip/jap/article-pdf/51/10/5450/7969138/5450_1_online.pdf .
  28. H. D. Ebinger and J. T. Yates, “Electron-impact-induced oxidation of Al(111) in water vapor: Relation to the Cabrera-Mott mechanism,” Phys. Rev. B 57, 1976–1984 (1998).
  29. Yide Zhang, “Magnetic annealing of magnetic alloys in a dynamic magnetic field,”  (2001), uS Patent 6,217,672 B1.
  30. Noriko Yamamoto, Yamashita,  and et. al, “Ultrasonic probe, piezoelectric transducer, method of manufacturing ultrasonic probe, and method of manufacturing piezoelectric transducer,”  (2014), uS Patent 2014/0062261 A1.
  31. Riccardo Manenti, Eyob A. Sete, Angela Q. Chen, Shobhan Kulshreshtha, Jen-Hao Yeh, Feyza Oruc, Andrew Bestwick, Mark Field, Keith Jackson,  and Stefano Poletto, “Full control of superconducting qubits with combined on-chip microwave and flux lines,” Applied Physics Letters 119, 144001 (2021), https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0065517/13194475/144001_1_online.pdf .
  32. J.-S Oh, C.J. Kopas, H. Canizoglu, E. Lachman, K. Yadavalli, J.Y. Mutus, T.-H. Kim, M.J. Kramer, A.H. King,  and L.) Zhou, “Correlating aluminum layer deposition rates, josephson junction microstructure, and superconducting qubits’ performance,”  (2024), in preparation.
  33. Danièle Bouchet and Christian Colliex, “Experimental study of elnes at grain boundaries in alumina: intergranular radiation damage effects on al-l23 and o-k edges,” Ultramicroscopy 96, 139–152 (2003).
  34. S. Fritz, A. Seiler, L. Radtke, R. Schneider, M. Weides, G. Weiß,  and D. Gerthsen, “Correlating the nanostructure of al-oxide with deposition conditions and dielectric contributions of two-level systems in perspective of superconducting quantum circuits,” Scientific Reports 8 (2018), 10.1038/s41598-018-26066-4.
  35. S. Fritz, L. Radtke, R. Schneider, M. Luysberg, M. Weides,  and D. Gerthsen, “Structural and nanochemical properties of alox layers in al/alox/al-layer systems for josephson junctions,” Physical Review Materials 3 (2019), 10.1103/physrevmaterials.3.114805.
  36. K. Kimoto, Y. Matsui, T. Nabatame, T. Yasuda, T. Mizoguchi, I. Tanaka,  and A. Toriumi, “Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si(001) using energy-loss near-edge structures,” Applied Physics Letters 83, 4306–4308 (2003), https://pubs.aip.org/aip/apl/article-pdf/83/21/4306/12229282/4306_1_online.pdf .
  37. C Weigel, G Calas, L Cormier, L Galoisy,  and G S Henderson, “High-resolution al l2, 3-edge x-ray absorption near edge structure spectra of al-containing crystals and glasses: coordination number and bonding information from edge components,” Journal of Physics: Condensed Matter 20, 135219 (2008).
  38. Mingqiang Li, Yidi Shen, Kun Luo, Qi An, Peng Gao, Penghao Xiao,  and Yu Zou, “Harnessing dislocation motion using an electric field,” Nature Materials 22, 958–963 (2023).
  39. S. Alfonzetti, E. Dilettos,  and N. Salerno, “Simulated annealing with restarts for the optimization of electromagnetic devices,” IEEE Transactions on Magnetics 42, 1115–1118 (2006).
  40. Hideki Hashimoto, Yohei Onodera, Shuta Tahara, Shinji Kohara, Koji Yazawa, Hiroyo Segawa, Motohiko Murakami,  and Koji Ohara, “Structure of alumina glass,” Scientific Reports 12, 516 (2022).
  41. Pablo G. Debenedetti and Frank H. Stillinger, “Supercooled liquids and the glass transition,” Nature 410, 259–267 (2001).
Citations (10)

Summary

We haven't generated a summary for this paper yet.