Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Implicit Neural Representation with Fourier Reparameterized Training (2401.07402v4)

Published 15 Jan 2024 in cs.CV

Abstract: Implicit Neural Representation (INR) as a mighty representation paradigm has achieved success in various computer vision tasks recently. Due to the low-frequency bias issue of vanilla multi-layer perceptron (MLP), existing methods have investigated advanced techniques, such as positional encoding and periodic activation function, to improve the accuracy of INR. In this paper, we connect the network training bias with the reparameterization technique and theoretically prove that weight reparameterization could provide us a chance to alleviate the spectral bias of MLP. Based on our theoretical analysis, we propose a Fourier reparameterization method which learns coefficient matrix of fixed Fourier bases to compose the weights of MLP. We evaluate the proposed Fourier reparameterization method on different INR tasks with various MLP architectures, including vanilla MLP, MLP with positional encoding and MLP with advanced activation function, etc. The superiority approximation results on different MLP architectures clearly validate the advantage of our proposed method. Armed with our Fourier reparameterization method, better INR with more textures and less artifacts can be learned from the training data.

Citations (5)

Summary

We haven't generated a summary for this paper yet.