Stabilization of molecular hydrogen-bonded chains by carbon nanotubes (2401.07366v1)
Abstract: We study numerically nonlinear dynamics of several types of molecular systems composed of hydrogen-bonded chains placed inside carbon nanotubes with open edges. We demonstrate that carbon nanotubes provide a stabilization mechanism for quasi-one-dimensional molecular chains via the formation of their secondary structures. In particular, a polypeptide chain (Gly)$N$ placed inside a carbon nanotube can form of a stable helical chain ($3{10}$, $\alpha$, $\pi$ and $\beta$-helix) with parallel chains of hydrogen-bonded peptide groups. A chain of hydrogen fluoride molecules can form hydrogen-bonded zigzag chain. We reveal that in such geometries the hydrogen-bonded chains may remain stable even at $T=500$~K. Thus, our results suggest that the use of carbon nanotubes with encapsulated hydrogen fluoride molecules may support high proton conductivity operating at high temperatures.
- S. C. Chowdhury, J. W. Gillespie Jr. A molecular dynamics study of the effects of hydrogen bonds on mechanical properties of Kevlar crystal. Computational Materials Science 148 286-300 (2018).
- K.-D. Kreuer. Proton Conductivity: Materials and Applications. Chem. Mater. 8(3), 610-641 (1996).
- M. Sprinborg. Energy surfaces and electronic properties of hydrogen fluoride. Phys Rev. B 38(2), 1483-1503 (1988).
- G. Zundel. Hydrogen Bonds with Large Proton Polarizability and Proton Transfer Processes in Electrochemistry and Biology. Adv. Chem. Phys. 111, 1 (2000)
- F. Fillaux. The impact of vibrational spectroscopy with neutrons on our view of quantum dynamics in hydrogen bonds and proton transfer. J. Mol. Struct. 615, 45-59 (2002).
- D. Marx. Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations. Chem. Phys. Chem. 7(9), 1848-1870 (2006).
- N. Bjerrum. Structure and Properties of Ice. Science. 115(2989), 385-390 (1952).
- L. Onsager. The Motion of Ions: Principles and Concepts. Science 166(3911), 1359 (1969).
- A. S. Davydov. Theory of the Absorption of Light in Molecular Crystals. Kiev: Ukrainian Acad. Scien. (1951).
- W. Moffitt. Optical Rotatory Dispersion of Helical Polymers. J. Chem. Phys. 25(6), 467-478 (1956).
- A. S. Davydov. Deformation of Molecular Crystals at Electronic Excitation. Phys. Stat. Sol. 36, 211-219 (1969).
- A. S. Davydov. Solitons in molecular systems. Phys. Scr. 20 387-394 (1979).
- A. S. Davydov. The role of solitons in the energy and electron transfer in one-dimensional molecular systems. Physica D 3, 1-22 (1981).
- A. C. Scott. Dynamics of Davydov solitons. Phys. Rev. A 26, 578-595 (1982).
- A. C. Scott. Davydov solitons in polypeptides. Phill. Trans. Roy. Soc. London A 315, 423-436 (1985).
- A. C. Scott. Davydov’s soliton. Phys Rep 217, 1-67 (1992).
- V. A. Kuprievich On autolocalization of the stationary states in a finite molecular chain. Physica D 14(3), 395-402 (1985).
- L. S. Brizhik. Soliton generation in molecular chains. Phys. Rev. B 48(5),3142-4 (1993).
- L. Cruzeiro. The VES Hypothesis and Protein Conformational Changes. Z. Phys. Chem. 230(5-7), 743-776 (2016).
- L. Cruzeiro. The VES KM: a pathway for protein folding in vivo. Pure Appl. Chem. 92(1), 179-191 (2020).
- L. Cruzeiro. Knowns and unknowns in the Davydov model for energy transfer in proteins. Fiz. Nizk. Temp. 48, 1105-1126 (December 2022).
- A. V. Savin and Y. S. Kivshar. Phononic Fano resonances in graphene nanoribbons with local defects. Sci. Rep. 7, 4668 (2017).
- A. V. Savin and Y. S. Kivshar. Discrete breathers in carbon nanotubes. Europhys. Lett. 82, 66002 (2008).
- A. V. Nemukhin. Zh. Fiz. Khim. 66, 4 (1992).