Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On global solutions of quasilinear second-order elliptic inequalities (2401.07095v4)

Published 13 Jan 2024 in math.AP

Abstract: We consider the inequality $$ - \operatorname{div} A (x, \nabla u) \ge f (u) \quad \mbox{in } {\mathbb R}n, $$ where $n \ge 2$ and $A$ is a Caratheodory function such that $$ C_1 |\xi|p \le \xi A (x, \xi) \quad \mbox{and} \quad |A (x, \xi)| \le C_2 |\xi|{p-1} $$ with some constants $C_1 > 0$, $C_2 > 0$, and $p > 1$ for almost all $x \in {\mathbb R}n$ and for all $\xi \in {\mathbb R}n$. Our aim is to find exact conditions on the function $f$ guaranteeing that any non-negative solution of this inequality is identically zero.

Citations (1)

Summary

We haven't generated a summary for this paper yet.