Contraderived categories of CDG-modules (2401.07021v2)
Abstract: For any CDG-ring $B\bullet=(B*,d,h)$, we show that the homotopy category of graded-projective (left) CDG-modules over $B\bullet$ is equivalent to the quotient category of the homotopy of graded-flat CDG-modules by its full triangulated subcategory of flat CDG-modules. The contraderived category (in the sense of Becker) $\mathsf D{\mathsf{bctr}}(B\bullet{-}\mathbf{Mod})$ is the common name for these two triangulated categories. We also prove that the classes of cotorsion and graded-cotorsion CDG-modules coincide, and the contraderived category of CDG-modules is equivalent to the homotopy category of graded-flat graded-cotorsion CDG-modules. Assuming the graded ring $B*$ to be graded right coherent, we show that the contraderived category $\mathsf D{\mathsf{bctr}}(B\bullet{-}\mathbf{Mod})$ is compactly generated and its full subcategory of compact objects is anti-equivalent to the full subcategory of compact objects in the coderived category of right CDG-modules $\mathsf D{\mathsf{bco}}(\mathbf{Mod}{-}B\bullet)$. Specifically, the latter triangulated category is the idempotent completion of the absolute derived category of finitely presented right CDG-modules $\mathsf D{\mathsf{abs}}(\mathbf{mod}{-}B\bullet)$.
- B. Keller, W. Lowen, P. Nicolás. On the (non)vanishing of some “derived” categories of curved dg algebras. Journ. of Pure and Appl. Algebra 214, #7, p. 1271–1284, 2010. arXiv:0905.3845 [math.KT]
- L. Positselski. Contraherent cosheaves. Electronic preprint arXiv:1209.2995 [math.CT].
- L. Positselski. Exact DG-categories and fully faithful triangulated inclusion functors. Electronic preprint arXiv:2110.08237 [math.CT].
- L. Positselski. Generalized periodicity theorems. Electronic preprint arXiv:2301.00708 [math.RA].
- L. Positselski, J. Šťovíček. Coderived and contraderived categories of locally presentable abelian DG-categories. Electronic preprint arXiv:2210.08237 [math.CT].
- M. Raynaud, L. Gruson. Critères de platitude et de projectivité: Techniques de “platification” d’un module. Inventiones Math. 13, #1–2, p. 1–89, 1971.
- J. Šťovíček. On purity and applications to coderived and singularity categories. Electronic preprint arXiv:1412.1615 [math.CT].