Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contraderived categories of CDG-modules (2401.07021v2)

Published 13 Jan 2024 in math.RA, math.AT, and math.CT

Abstract: For any CDG-ring $B\bullet=(B*,d,h)$, we show that the homotopy category of graded-projective (left) CDG-modules over $B\bullet$ is equivalent to the quotient category of the homotopy of graded-flat CDG-modules by its full triangulated subcategory of flat CDG-modules. The contraderived category (in the sense of Becker) $\mathsf D{\mathsf{bctr}}(B\bullet{-}\mathbf{Mod})$ is the common name for these two triangulated categories. We also prove that the classes of cotorsion and graded-cotorsion CDG-modules coincide, and the contraderived category of CDG-modules is equivalent to the homotopy category of graded-flat graded-cotorsion CDG-modules. Assuming the graded ring $B*$ to be graded right coherent, we show that the contraderived category $\mathsf D{\mathsf{bctr}}(B\bullet{-}\mathbf{Mod})$ is compactly generated and its full subcategory of compact objects is anti-equivalent to the full subcategory of compact objects in the coderived category of right CDG-modules $\mathsf D{\mathsf{bco}}(\mathbf{Mod}{-}B\bullet)$. Specifically, the latter triangulated category is the idempotent completion of the absolute derived category of finitely presented right CDG-modules $\mathsf D{\mathsf{abs}}(\mathbf{mod}{-}B\bullet)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (7)
  1. B. Keller, W. Lowen, P. Nicolás. On the (non)vanishing of some “derived” categories of curved dg algebras. Journ. of Pure and Appl. Algebra 214, #7, p. 1271–1284, 2010. arXiv:0905.3845 [math.KT]
  2. L. Positselski. Contraherent cosheaves. Electronic preprint arXiv:1209.2995 [math.CT].
  3. L. Positselski. Exact DG-categories and fully faithful triangulated inclusion functors. Electronic preprint arXiv:2110.08237 [math.CT].
  4. L. Positselski. Generalized periodicity theorems. Electronic preprint arXiv:2301.00708 [math.RA].
  5. L. Positselski, J. Šťovíček. Coderived and contraderived categories of locally presentable abelian DG-categories. Electronic preprint arXiv:2210.08237 [math.CT].
  6. M. Raynaud, L. Gruson. Critères de platitude et de projectivité: Techniques de “platification” d’un module. Inventiones Math. 13, #1–2, p. 1–89, 1971.
  7. J. Šťovíček. On purity and applications to coderived and singularity categories. Electronic preprint arXiv:1412.1615 [math.CT].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com