Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrated photonic structures for photon-mediated entanglement of trapped ions (2401.06850v2)

Published 12 Jan 2024 in quant-ph and physics.atom-ph

Abstract: Trapped atomic ions are natural candidates for quantum information processing and have the potential to realize or improve quantum computing, sensing, and networking. These applications often require the collection of individual photons emitted from ions into guided optical modes, in some cases for the production of entanglement between separated ions. Proof-of-principle demonstrations of such photon collection from trapped ions have been performed using high-numerical-aperture lenses or cavities and single-mode fibers, but integrated photonic elements in ion-trap structures offer advantages in scalability and manufacturabilty over traditional optics. In this paper we analyze structures monolithically fabricated with an ion trap for collecting ion-emitted photons, coupling them into waveguides, and manipulating them via interference. We calculate geometric limitations on collection efficiency for this scheme, simulate a single-layer grating that shows performance comparable to demonstrated free-space optics, and discuss practical fabrication and fidelity considerations. Based on this analysis, we conclude that integrated photonics can support scalable systems of trapped-ions that can distribute quantum information via photon-mediated entanglement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. K. Brown, J. Kim, and C. Monroe, njp Quantum Inf 2, 16034 (2016).
  2. T. Kim, P. Maunz, and J. Kim, Phys. Rev. A 84, 063423 (2011).
  3. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
  4. N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, Phys. Rev. X 4, 041041 (2014).
  5. H. Knab, M. Schupp, and G. Werth, EPL (Europhysics Letters) 4, 1361 (2007).
  6. R. Blatt and G. Werth, Phys. Rev. A 25, 1476 (1982).
  7. R. Blatt, H. Schnatz, and G. Werth, Zeitschrift für Physik A Atoms and Nuclei 312, 143 (1983).
  8. C. Simon and W. T. M. Irvine, Phys. Rev. Lett. 91, 110405 (2003).
  9. M. G. House, Phys. Rev. A 78, 033402 (2008).
  10. K. K. Mehta and R. J. Ram, Scientific Reports 7, 2019 (2017).
  11. A. Frishman and D. Malka, Nanomaterials 13, 2077 (2023).
  12. J.-L. Tambasco and D. F. Siriani, Opt. Express 31, 41987 (2023).
  13. D. F. Siriani and J.-L. Tambasco, Opt. Express 29, 3243 (2021).
  14. L. Soldano and E. Pennings, Journal of Lightwave Technology 13, 615 (1995).
  15. S. Ferrari, C. Schuck, and W. Pernice, Nanophotonics 7, 1725 (2018).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com