Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
44 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
83 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Random trees with local catastrophes: the Brownian case (2401.06770v1)

Published 12 Jan 2024 in math.PR and math.CO

Abstract: We introduce and study a model of plane random trees generalizing the famous Bienaym\'e--Galton--Watson model but where births and deaths are locally correlated. More precisely, given a random variable $(B,H)$ with values in ${1,2,3, \dots}2$, given the state of the tree at some generation, the next generation is obtained (informally) by successively deleting $B$ individuals side-by-side and replacing them with $H$ new particles where the samplings are i.i.d. We prove that, in the critical case $\mathbb{E}[B]=\mathbb{E}[H]$, and under a third moment condition on $B$ and $H$, the random trees coding the genealogy of the population model converges towards the Brownian Continuum Random Tree. Interestingly, our proof does not use the classical height process or the {\L}ukasiewicz exploration, but rather the stochastic flow point of view introduced by Bertoin and Le Gall.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.