Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Networks for Singular Perturbations (2401.06656v1)

Published 12 Jan 2024 in math.NA, cs.LG, and cs.NA

Abstract: We prove deep neural network (DNN for short) expressivity rate bounds for solution sets of a model class of singularly perturbed, elliptic two-point boundary value problems, in Sobolev norms, on the bounded interval $(-1,1)$. We assume that the given source term and reaction coefficient are analytic in $[-1,1]$. We establish expression rate bounds in Sobolev norms in terms of the NN size which are uniform with respect to the singular perturbation parameter for several classes of DNN architectures. In particular, ReLU NNs, spiking NNs, and $\tanh$- and sigmoid-activated NNs. The latter activations can represent `exponential boundary layer solution features'' explicitly, in the last hidden layer of the DNN, i.e. in a shallow subnetwork, and afford improved robust expression rate bounds in terms of the NN size. We prove that all DNN architectures allow robust exponential solution expression in so-calledenergy' as well as in `balanced' Sobolev norms, for analytic input data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Galerkin neural network approximation of singularly-perturbed elliptic systems. Comput. Methods Appl. Mech. Engrg. 402: Paper No. 115169, 29. 10.1016/j.cma.2022.115169 . Chang et al. [2023] Chang, T.Y., G.M. Gie, Y. Hong, and C.Y. Jung. 2023. Singular layer physics informed neural network method for plane parallel flows. ArXiv:2311.15304. Davis [1975] Davis, P.J. 1975. Interpolation and approximation. Dover Publications, Inc., New York. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. De Ryck et al. [2021] De Ryck, T., S. Lanthaler, and S. Mishra. 2021. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Chang, T.Y., G.M. Gie, Y. Hong, and C.Y. Jung. 2023. Singular layer physics informed neural network method for plane parallel flows. ArXiv:2311.15304. Davis [1975] Davis, P.J. 1975. Interpolation and approximation. Dover Publications, Inc., New York. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. De Ryck et al. [2021] De Ryck, T., S. Lanthaler, and S. Mishra. 2021. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Davis, P.J. 1975. Interpolation and approximation. Dover Publications, Inc., New York. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. De Ryck et al. [2021] De Ryck, T., S. Lanthaler, and S. Mishra. 2021. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. De Ryck, T., S. Lanthaler, and S. Mishra. 2021. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  2. Singular layer physics informed neural network method for plane parallel flows. ArXiv:2311.15304. Davis [1975] Davis, P.J. 1975. Interpolation and approximation. Dover Publications, Inc., New York. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. De Ryck et al. [2021] De Ryck, T., S. Lanthaler, and S. Mishra. 2021. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Davis, P.J. 1975. Interpolation and approximation. Dover Publications, Inc., New York. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. De Ryck et al. [2021] De Ryck, T., S. Lanthaler, and S. Mishra. 2021. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. De Ryck, T., S. Lanthaler, and S. Mishra. 2021. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  3. Davis, P.J. 1975. Interpolation and approximation. Dover Publications, Inc., New York. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. De Ryck et al. [2021] De Ryck, T., S. Lanthaler, and S. Mishra. 2021. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. De Ryck, T., S. Lanthaler, and S. Mishra. 2021. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  4. On the approximation of functions by tanh neural networks. Neural Networks 143: 732–750. 10.1016/j.neunet.2021.08.015 . Elbrächter et al. [2022] Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Elbrächter, D., P. Grohs, A. Jentzen, and C. Schwab. 2022. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  5. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation 55(1): 3–71. 10.1007/s00365-021-09541-6 . Gautschi [2004] Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  6. Gautschi, W. 2004. Orthogonal polynomials : computation and approximation. Numerical mathematics and scientific computation. Oxford: Oxford University Press. Gie et al. [2018] Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Gie, G.M., M. Hamouda, C.Y. Jung, and R.M. Temam. 2018. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  7. Singular perturbations and boundary layers, Volume 200 of Applied Mathematical Sciences. Springer, Cham. Herrmann et al. [2022] Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Herrmann, L., J.A.A. Opschoor, and C. Schwab. 2022. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  8. Constructive deep ReLU neural network approximation. Journal of Scientific Computing 90(2): 75. 10.1007/s10915-021-01718-2 . Maass [1997a] Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  9. Maass, W. 1997a. Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 279–304. 10.1162/neco.1997.9.2.279 . Maass [1997b] Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  10. Maass, W. 1997b. Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659–1671. 10.1016/S0893-6080(97)00011-7 . Marcati et al. [2023] Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C., J.A.A. Opschoor, P.C. Petersen, and C. Schwab. 2023. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  11. Exponential ReLU neural network approximation rates for point and edge singularities. Journ. Found. Comp. Math. 23(3): 1043–1127. https://doi.org/10.1007/s10208-022-09565-9 . Marcati and Schwab [2023] Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Marcati, C. and C. Schwab. 2023. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  12. Exponential convergence of deep operator networks for elliptic partial differential equations. SIAM J. Numer. Anal. 61(3): 1513–1545. 10.1137/21M1465718 . Melenk [1997] Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  13. Melenk, J.M. 1997. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element method for problems with boundary layers. IMA J. Numer. Anal. 17(4): 577–601. 10.1093/imanum/17.4.577 . Melenk and Xenophontos [2016] Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Melenk, J.M. and C. Xenophontos. 2016. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  14. Robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 53(1): 105–132. 10.1007/s10092-015-0139-y . Opschoor [2023] Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  15. Opschoor, J.A.A. 2023. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. Ph. D. thesis, ETH Zürich. Diss. ETH No. 29278. Opschoor et al. [2020] Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A., P.C. Petersen, and C. Schwab. 2020. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  16. Deep ReLU networks and high-order finite element methods. Analysis and Applications 18(05): 715–770. 10.1142/S0219530519410136 . Opschoor and Schwab [2023] Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Opschoor, J.A.A. and C. Schwab 2023. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  17. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation. Technical Report 2023-38, Seminar for Applied Mathematics, ETH Zürich, Switzerland. Petersen and Voigtlaender [2018] Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Petersen, P. and F. Voigtlaender. 2018. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  18. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108: 296 – 330. 10.1016/j.neunet.2018.08.019 . Rauhut and Schwab [2017] Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rauhut, H. and C. Schwab. 2017. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  19. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comp. 86(304): 661–700. 10.1090/mcom/3113 . Rivlin [1974] Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  20. Rivlin, T.J. 1974. The Chebyshev polynomials. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Schwab [1998] Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  21. Schwab, C. 1998. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York. Schwab and Suri [1996] Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Schwab, C. and M. Suri. 1996. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  22. The p𝑝pitalic_p and h⁢pℎ𝑝hpitalic_h italic_p versions of the finite element method for problems with boundary layers. Math. Comp. 65(216): 1403–1429. 10.1090/S0025-5718-96-00781-8 . Stanojevic et al. [2022] Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Stanojevic, A., S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. 2022. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  23. An exact mapping from ReLU networks to spiking neural networks. ArXiv:2212.12522. Tang et al. [2019] Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Tang, S., B. Li, and H. Yu 2019. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  24. ChebNet: Efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations. Technical report. ArXiv: 1911.05467. Trefethen [2019] Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
  25. Trefethen, L.N. 2019. Approximation theory and approximation practice (Extended ed.). Philadelphia: Society for Industrial and Applied Mathematics.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com