Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalar Representation of 2D Steady Vector Fields (2401.06576v1)

Published 12 Jan 2024 in cs.GR

Abstract: We introduce a representation of a 2D steady vector field ${{\mathbf v}}$ by two scalar fields $a$, $b$, such that the isolines of $a$ correspond to stream lines of ${{\mathbf v}}$, and $b$ increases with constant speed under integration of ${{\mathbf v}}$. This way, we get a direct encoding of stream lines, i.e., a numerical integration of ${{\mathbf v}}$ can be replaced by a local isoline extraction of $a$. To guarantee a solution in every case, gradient-preserving cuts are introduced such that the scalar fields are allowed to be discontinuous in the values but continuous in the gradient. Along with a piecewise linear discretization and a proper placement of the cuts, the fields $a$ and $b$ can be computed. We show several evaluations on non-trivial vector fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (85)
  1. The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum, 23(2):203–221, 2004. ISSN 1467-8659. doi:10.1111/j.1467-8659.2004.00753.x. URL http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x.
  2. The State of the Art in Flow Visualisation: Feature Extraction and Tracking. Computer Graphics Forum, 2003. ISSN 1467-8659. doi:10.1111/j.1467-8659.2003.00723.x.
  3. The state of the art in vortex extraction. Computer Graphics Forum, 2017.
  4. The State of the Art in Topology?Based Visualization of Unsteady Flow. Computer Graphics Forum, 2011a. ISSN 1467-8659. doi:org:443/handle/10.1111/v30i6pp1789-1811.
  5. The state of the art in flow visualization: Partition-based techniques. In H. Hauser, S. Strassburger, and H. Theisel, editors, Simulation and Visualization 2008, pages 75–92. SCS Publishing House, SCS Publishing House, 2008.
  6. Illustrative Flow Visualization: State of the Art, Trends and Challenges. In Marie-Paule Cani and Fabio Ganovelli, editors, Eurographics 2012 - State of the Art Reports. The Eurographics Association, 2012. doi:10.2312/conf/EG2012/stars/075-094.
  7. Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22(8):27–36, 1989.
  8. Visualizing non-linear vector field topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109–116, 1998.
  9. Wim de Leeuw and Robert van Liere. Collapsing flow topology using area metrics. In Proc. IEEE Visualization ’99, pages 149–354, 1999a.
  10. Detection and visualization of closed streamlines in planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–172, 2001.
  11. Wim de Leeuw and Robert van Liere. Visualization of global flow structures using multiple levels of topology. In Data Visualization 1999. Proc. VisSym 99, pages 45–52, 1999b.
  12. A topology simplification method for 2D vector fields. In Proc. IEEE Visualization, pages 359–366, 2000.
  13. Continuous topology simplification of planar vector fields. In Proc. IEEE Visualization, pages 159 – 166, 2001.
  14. Topology-preserving smoothing of vector fields. IEEE Transactions on Visualization and Computer Graphics, 7(3):222–229, 2001.
  15. Topology preserving compression of 2D vector fields. In Proc. IEEE Visualization, pages 343–350, 2000.
  16. Nikolai M. Faaland Suresh Lodha and Jose C. Renteria. Topology preserving top-down compression of 2D vector fields using bintree and triangular quadtrees. IEEE Transactions on Visualization and Computer Graphics, 9(4):433–442, 2003.
  17. Compression of 2D vector fields under guaranteed topology preservation. Computer Graphics Forum (Eurographics 2003), 22(3):333–342, 2003a.
  18. Holger Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics Forum (Eurographics 2002), 21(3):595–604, 2002.
  19. Topological construction and visualization of higher order 3D vector fields. Computer Graphics Forum (Proc. Eurographics), 23(3):469–478, 2004a.
  20. A tool for visualizing the topology of three-dimensional vector fields. In Proc. IEEE Visualization, pages 33–40, 1991.
  21. Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 11:36–46, 1991.
  22. Improving topological segmentation of three-dimensional vector fields. In Data Visualization (Proc. VisSym), pages 203–212, 2003.
  23. Topological segmentation in three-dimensional vector fields. IEEE Transactions on Visualization and Computer Graphics, 10(2):198–205, 2004.
  24. Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields. In Proc. IEEE Visualization 2003, pages 225–232, 2003b.
  25. Boundary switch connectors for topological visualization of complex 3D vector fields. In Data Visualization (Proc. VisSym), pages 183–192, 2004b.
  26. Topology-based flow visualization, the state of the art. In Helwig Hauser, Hans Hagen, and Holger Theisel, editors, Topology-based Methods in Visualization, Mathematics and Visualization, pages 1–19. Springer, 2007. ISBN 978-3-540-70822-3. doi:10.1007/978-3-540-70823-0_1. URL http://dx.doi.org/10.1007/978-3-540-70823-0_1.
  27. The state of the art in topology-based visualization of unsteady flow. Computer Graphics Forum, 30(6):1789–1811, 2011b. ISSN 1467-8659.
  28. From numerics to combinatorics: a survey of topological methods for vector field visualization. Journal of Visualization, pages 1–26, 2016.
  29. A survey of topology-based methods in visualization. In Computer Graphics Forum, volume 35, pages 643–667. Wiley Online Library, 2016.
  30. George Haller. Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D, 149:248–277, 2001.
  31. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147(3-4):352–370, 2000. ISSN 0167-2789. doi:http://dx.doi.org/10.1016/S0167-2789(00)00142-1.
  32. Filtering of FTLE for visualizing spatial separation in unsteady 3D flow. In Topological Methods in Data Analysis and Visualization II, pages 237–253. Springer, 2012.
  33. George Haller. Lagrangian coherent structures from approximate velocity data. Physics of Fluids, 14(6), 2002. doi:http://dx.doi.org/10.1063/1.1477449.
  34. Pollution release tied to invariant manifolds: A case study for the coast of Florida. Physica D, 210(1):1–20, 2005.
  35. The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay. Deep Sea Research Part II: Topical Studies in Oceanography, 56(3-5):161–172, 2009. ISSN 0967-0645. doi:DOI: 10.1016/j.dsr2.2008.08.008. URL http://www.sciencedirect.com/science/article/B6VGC-4TJ1HH1-3/2/9f098e9e2684e5cd8f53e69ab3c59c26.
  36. Experimental and numerical investigation of the kinematic theory of unsteady separation. Journal of Fluid Mechanics, 611, 2008. doi:10.1017/S0022112008002395.
  37. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212(7):271–304, 2005. ISSN 0167-2789. doi:http://dx.doi.org/10.1016/S0167-2789(00)00199-8.
  38. Time-Dependent 2D Vector Field Topology: An Approach Inspired by Lagrangian Coherent Structures. Computer Graphics Forum, 29(1):88–100, 2010.
  39. A time-dependent vector field topology based on streak surfaces. IEEE Transactions on Visualization and Computer Graphics, 19(3):379–392, 2013.
  40. A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(1):017504, 2010. doi:10.1063/1.3270049. URL http://link.aip.org/link/?CHA/20/017504/1.
  41. MCFTLE: Monte Carlo rendering of finite-time Lyapunov exponent fields. Computer Graphics Forum (Proc. EuroVis), 35(3):381–390, 2016.
  42. Visualization of coherent structures in transient 2D flows. In Proceedings of TopoInVis 2007, pages 1–13, 2009.
  43. Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Transactions on Visualization and Computer Graphics, 13(6):1464–1471, 2007. ISSN 1077-2626. doi:http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70551.
  44. Visualizing Lagrangian coherent structures and comparison to vector field topology. In Proceedings of TopoInVis 2007, pages 15–30, 2009.
  45. Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization), 13(6):1456–1463, 2007.
  46. Time-Dependent Visualization of Lagrangian Coherent Structures by Grid Advection. In Proceedings of TopoInVis 2009, pages 151–165. Springer, 2011.
  47. Extracting features from time-dependent vector fields using internal reference frames. Computer Graphics Forum (Proc. EuroVis), 33(3):21–30, June 2014.
  48. Computation of localized flow for steady and unsteady vector fields and its applications. IEEE Transactions on Visualization and Computer Graphics, 13(4):641–651, 2007.
  49. Topology-inspired galilean invariant vector field analysis. In 2016 IEEE Pacific Visualization Symposium (PacificVis), pages 72–79. IEEE, 2016.
  50. Robin Forman. A user’s guide to discrete morse theory. In Proc. of the 2001 Internat. Conf. on Formal Power Series and Algebraic Combinatorics, A special volume of Advances in Applied Mathematics, page 48, 2001.
  51. Combinatorial 2d vector field topology extraction and simplification. In Valerio Pascucci, Xavier Tricoche, Hans Hagen, and Julien Tierny, editors, Topological Methods in Data Analysis and Visualization, pages 103 – 114. 2011. ISBN 978-3-642-15013-5. doi:10.1007/978-3-642-15014-2_9.
  52. Vector field editing and periodic orbit extraction using morse decomposition. IEEE Transactions on Visualization & Computer Graphics, 13:769–785, 07 2007. ISSN 1077-2626. doi:10.1109/TVCG.2007.1021. URL doi.ieeecomputersociety.org/10.1109/TVCG.2007.1021.
  53. Flow visualization with quantified spatial and temporal errors using edge maps. IEEE Trans. Vis. Comput. Graph., 18(9):1383–1396, 2012. doi:10.1109/TVCG.2011.265. URL https://doi.org/10.1109/TVCG.2011.265.
  54. Critical point cancellation in 3d vector fields: Robustness and discussion. Transactions on Visualization and Computer Graphics, 2016.
  55. Visualizing robustness of critical points for 2d time-varying vector fields. Comput. Graph. Forum, 32(3):221–230, 2013. doi:10.1111/cgf.12109. URL https://doi.org/10.1111/cgf.12109.
  56. Hierarchical morse complexes for piecewise linear 2-manifolds. In Proceedings of the Seventeenth Annual Symposium on Computational Geometry, SCG ’01, pages 70–79, New York, NY, USA, 2001. ACM. ISBN 1-58113-357-X. doi:10.1145/378583.378626. URL http://doi.acm.org/10.1145/378583.378626.
  57. A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph., 10(4):385–396, 2004. doi:10.1109/TVCG.2004.3. URL https://doi.org/10.1109/TVCG.2004.3.
  58. Morse-smale complexes for piecewise linear 3-manifolds. In Proceedings of the 19th ACM Symposium on Computational Geometry, San Diego, CA, USA, June 8-10, 2003, pages 361–370, 2003. doi:10.1145/777792.777846. URL http://doi.acm.org/10.1145/777792.777846.
  59. Topology-based simplification for feature extraction from 3d scalar fields. In 16th IEEE Visualization Conference, VIS 2005, Minneapolis, MN, USA, October 23-28, 2005, pages 535–542, 2005. doi:10.1109/VISUAL.2005.1532839. URL https://doi.org/10.1109/VISUAL.2005.1532839.
  60. Applications of forman’s discrete morse theory to topology visualization and mesh compression. IEEE Trans. Vis. Comput. Graph., 10(5):499–508, 2004. doi:10.1109/TVCG.2004.18. URL https://doi.org/10.1109/TVCG.2004.18.
  61. Computing accurate morse-smale complexes from gradient vector fields. In Green in Software Engineering, pages 205–218. 2015. doi:10.1007/978-3-662-44900-4_12. URL https://doi.org/10.1007/978-3-662-44900-4_12.
  62. Efficient computation of morse-smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph., 13(6):1440–1447, 2007. doi:10.1109/TVCG.2007.70552. URL https://doi.org/10.1109/TVCG.2007.70552.
  63. Simplification of tetrahedral meshes with accurate error evaluation. In IEEE Visualization 2000, October 8-13, 2000, Hilton Hotel, Salt Lake City, Utah, USA, Proceedings., pages 85–92, 2000. doi:10.1109/VISUAL.2000.885680. URL https://doi.org/10.1109/VISUAL.2000.885680.
  64. Simplifying flexible isosurfaces using local geometric measures. In 15th IEEE Visualization 2004 Conference, VIS 2004, Austin, TX, USA, October 10-15, 2004, pages 497–504, 2004. doi:10.1109/VISUAL.2004.96. URL https://doi.org/10.1109/VISUAL.2004.96.
  65. Topological noise removal. In Proceedings of the Graphics Interface 2001 Conference, Ottawa, Ontario, Canada, June 7-9, 2001, pages 19–26, 2001. URL http://www.graphicsinterface.org/proceedings/2001/121/.
  66. Topological volume skeletonization using adaptive tetrahedralization. In 2004 Geometric Modeling and Processing (GMP 2004), Theory and Applications, 13-15 April 2004, Beijing, China, pages 227–236, 2004. doi:10.1109/GMAP.2004.1290044. URL https://doi.org/10.1109/GMAP.2004.1290044.
  67. Computing contour trees in all dimensions. Comput. Geom., 24(2):75–94, 2003. doi:10.1016/S0925-7721(02)00093-7. URL https://doi.org/10.1016/S0925-7721(02)00093-7.
  68. Interactive quadrangulation with reeb atlases and connectivity textures. IEEE Trans. Vis. Comput. Graph., 18(10):1650–1663, 2012. doi:10.1109/TVCG.2011.270. URL https://doi.org/10.1109/TVCG.2011.270.
  69. A. Clebsch. Ueber die integration der hydrodynamischen gleichungen. Journal für die reine und angewandte Mathematik, 56:1–10, 1859. URL http://eudml.org/doc/147740.
  70. Peter Kotiuga. Clebsch potentials and the visualization of three-dimensional solenoidal vector fields. 27:3986 – 3989, 10 1991.
  71. On the identification of a vortex. Journal of Fluid Mechanics, 285:69?94, 1995. doi:10.1017/S0022112095000462.
  72. Axel Brandenburg. Magnetic field evolution in simulations with euler potentials. Monthly Notices of the Royal Astronomical Society, 401(1):347–354, 2010. ISSN 1365-2966. doi:10.1111/j.1365-2966.2009.15640.x. URL http://dx.doi.org/10.1111/j.1365-2966.2009.15640.x.
  73. Construction of initial vortex-surface fields and clebsch potentials for flows with high-symmetry using first integrals. Physics of Fluids, 28(3):037101, 2016. doi:10.1063/1.4943368.
  74. Clebsch representation near points where the vorticity vanishes. Physics of Fluids, 12(4):744–746, 2000. doi:10.1063/1.870331.
  75. Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph., 36(4):142:1–142:11, July 2017. doi:10.1145/3072959.3073591. URL http://dx.doi.org/10.1145/3072959.3073591.
  76. Kinodynamic skinning using volume-preserving deformations. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pages 129–140, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association. ISBN 978-1-59593-624-0. URL http://dl.acm.org/citation.cfm?id=1272690.1272709.
  77. Vector field based shape deformations. ACM Trans. Graph., 25(3):1118–1125, July 2006. ISSN 0730-0301. doi:10.1145/1141911.1142002. URL http://doi.acm.org/10.1145/1141911.1142002.
  78. Texture mapping using surface flattening via multidimensional scaling. 8:198–207, 05 2002.
  79. Mesh parameterization: Theory and practice. In ACM SIGGRAPH ASIA 2008 Courses, SIGGRAPH Asia ’08, pages 12:1–12:87, New York, NY, USA, 2008. ACM. doi:10.1145/1508044.1508091. URL http://doi.acm.org/10.1145/1508044.1508091.
  80. Interactively controlled quad remeshing of high resolution 3d models. ACM Trans. Graph., 35(6):218:1–218:13, November 2016. ISSN 0730-0301. doi:10.1145/2980179.2982413. URL http://doi.acm.org/10.1145/2980179.2982413.
  81. M. Campen and L. Kobbelt. Quad Layout Embedding via Aligned Parameterization. Computer Graphics Forum, 2014. ISSN 1467-8659. doi:10.1111/cgf.12401.
  82. Optimally cutting a surface into a disk. In Proceedings of the Eighteenth Annual Symposium on Computational Geometry, SCG ’02, pages 244–253, New York, NY, USA, 2002. ACM. ISBN 1-58113-504-1. doi:10.1145/513400.513430. URL http://doi.acm.org/10.1145/513400.513430.
  83. Finite time steady 2d vector field topology. In Topological Methods in Data Analysis and Visualization IV, pages 253–266, 2017.
  84. Grid-independent detection of closed stream lines in 2d vector fields. In Proc. Vision, Modeling and Visualization (VMV) 2004, pages 421–428, Stanford, USA, November 15–18 2004.
  85. Boundary Switch Connectors for Topological Visualization of Complex 3D Vector Fields, pages 183–192. 2004c.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets