Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Stochastic Model for IRS-Assisted Communication Systems Based on the Sum-Product of Nakagami-$m$ Random Variables (2401.06268v2)

Published 11 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: This paper presents exact formulas for the probability distribution function (PDF) and moment generating function (MGF) of the sum-product of statistically independent but not necessarily identically distributed (i.n.i.d.) Nakagami-$m$ random variables (RVs) in terms of Meijer's G-function. Additionally, exact series representations are also derived for the sum of double-Nakagami RVs, providing useful insights on the trade-off between accuracy and computational cost. Simple asymptotic analytical expressions are provided to gain further insight into the derived formula, and the achievable diversity order is obtained. The suggested statistical properties are proved to be a highly useful tool for modeling parallel cascaded Nakagami-$m$ fading channels. The application of these new results is illustrated by deriving exact expressions and simple tight upper bounds for the outage probability (OP) and average symbol error rate (ASER) of several binary and multilevel modulation signals in intelligent reflecting surfaces (IRSs)-assisted communication systems operating over Nakagami-$m$ fading channels. It is demonstrated that the new asymptotic expression is highly accurate and can be extended to encompass a wider range of scenarios. To validate the theoretical frameworks and formulations, Monte-Carlo simulation results are presented. Additionally, supplementary simulations are provided to compare the derived results with two common types of approximations available in the literature, namely the central limit theorem (CLT) and gamma distribution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. H. Amiriara, M. R. Zahabi, and V. Meghdadi, “Power-Location Optimization for Cooperative Nomadic Relay Systems Using Machine Learning Approach,” IEEE Access, vol. 9, pp. 74246-74257, 2021. doi: 10.1109/ACCESS.2021.3079171.
  2. D. Li, “Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors,” IEEE Commun. Lett., vol. 24, no. 8, pp. 1646–1650, Aug. 2020. doi: 10.1109/LCOMM.2020.3006138.
  3. Q. Tao, J. Wang, and C. Zhong, “Performance analysis of intelligent reflecting surface-aided communication systems,” IEEE Commun. Lett., vol. 24, no. 11, pp. 2464–2468, Nov. 2020. doi: 10.1109/LCOMM.2020.3031426.
  4. P. Xu, G. Chen, Z. Yang, and M. D. Renzo, “Reconfigurable intelligent surfaces-assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?” IEEE Wireless Commun. Lett., vol. 10, no. 2, pp. 358–362, Feb. 2021. doi: 10.1109/LWC.2020.3041329.
  5. T. Wang, G. Chen, J. P. Coon, and M.-A. Badiu, “Chernoff bound and saddlepoint approximation for outage probability in IRS-assisted wireless systems,” in Proc. IEEE Globecom Workshops (GC Wkshps), 2021, pp. 1–5. doi: 10.1109/GCWkshps50377.2021.9493914.
  6. E. Björnson and L. Sanguinetti, “Demystifying the power scaling law of intelligent reflecting surfaces and metasurfaces,” in Proc. IEEE 8th Int. Workshop Comput. Adv. Multi-Sens. Adapt. Process. (CAMSAP), 2019, pp. 549-553. doi: 10.1109/CAMSAP45664.2019.9022414.
  7. E. Basar, “Transmission through large intelligent surfaces: A new frontier in wireless communications,” in Proc. Eur. Conf. Netw. Commun. (EuCNC), 2019, pp. 112-117. doi: 10.1109/EUCNC.2019.8802088.
  8. D. Kudathanthirige, D. Gunasinghe, and G. Amarasuriya, “Performance analysis of intelligent reflective surfaces for wireless communication,” Proc. IEEE Int. Conf. Commun. (ICC), pp. 1-6, 2020. doi: 10.1109/ICC40277.2020.9148774.
  9. T. Wang, G. Chen, J. P. Coon, and M.-A. Badiu, “Study of intelligent reflective surface assisted communications with one-bit phase adjustments,” Proc. IEEE Global Commun. Conf. (GLOBECOM), pp. 1-6, 2020. doi: 10.1109/GLOBECOM42002.2020.9322157.
  10. N. A. Kamaruddin, A. Mahmud, M. Y. B. Alias, A. A. Aziz, and S. Yaakob, “Performance evaluation of reconfigurable intelligent surface against distributed antenna system at the cell edge,” Electronics, vol. 11, no. 15, p. 2376, 2022. doi: 10.3390/electronics11152376.
  11. M. Jung, W. Saad, Y. Jang, G. Kong, and S. Choi, “Reliability analysis of large intelligent surfaces (LISs): Rate distribution and outage probability,” IEEE Wireless Commun. Lett., vol. 8, no. 6, pp. 1662-1666, Dec. 2019. doi: 10.1109/LWC.2019.2934641.
  12. M. Jung, W. Saad, Y. Jang, G. Kong, and S. Choi, “Performance analysis of large intelligent surfaces (LISs): Asymptotic data rate and channel hardening effects,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2052-2065, Mar. 2020. doi: 10.1109/TWC.2019.2952905.
  13. D. Tyrovolas, S. A. Tegos, E. C. Dimitriadou-Panidou, P. D. Diamantoulakis, C. K. Liaskos, and G. K. Karagiannidis, “Performance analysis of cascaded reconfigurable intelligent surface networks,” IEEE Wireless Commun. Lett., vol. 11, no. 9, pp. 1855-1859, Sep. 2022. doi: 10.1109/LWC.2022.3143128.
  14. B. C. Nguyen, L. T. Dung, T. M. Hoang, N. V. Vinh, and G. T. Luu, “On performance of multi-RIS assisted multi-user nonorthogonal multiple access system over Nakagami-m𝑚mitalic_m fading channels,” Computers & Communications, vol. 197, pp. 294-305, Nov. 2022. doi: 10.1016/j.comcom.2022.09.023.
  15. A.-A. A. Boulogeorgos and A. Alexiou, “Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying,” IEEE Access, vol. 8, pp. 94463-94483, 2020. doi: 10.1109/ACCESS.2020.2995111
  16. S. Atapattu, R. Fan, P. Dharmawansa, G. Wang, J. Evans, and T. A. Tsiftsis, “Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization,” IEEE Trans. Commun., vol. 68, no. 10, pp. 6552-6567, Oct. 2020. doi: 10.1109/TCOMM.2020.3019569.
  17. I. Trigui, W. Ajib, and W.-P. Zhu, “A comprehensive study of reconfigurable intelligent surfaces in generalized fading,” arXiv:2004.02922, 2020. Available: https://arxiv.org/abs/2004.02922.
  18. M. H. N. Shaikh, V. A. Bohara, A. Srivastava, and G. Ghatak, “On the performance of RIS-aided NOMA system with non-ideal transceiver over Nakagami-m𝑚mitalic_m fading,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2022, pp. 1737-1742. doi: 10.1109/WCNC.2022.9664077.
  19. B. Tahir, S. Schwarz, and M. Rupp, “Analysis of uplink IRS-assisted NOMA under Nakagami-m𝑚mitalic_m fading via moments matching,” IEEE Commun. Lett., vol. 10, no. 3, pp. 624-628, Mar. 2021. doi: 10.1109/LCOMM.2020.3032041.
  20. A. Al-Rimawi and A. Al-Dweik, “On the Performance of RIS-Assisted Communications with Direct Link Over k−ν𝑘𝜈k-\nuitalic_k - italic_ν Shadowed Fading,” in IEEE Open Journal of the Communications Society, vol. 3, pp. 2314-2328, 2022. doi: 10.1109/OJCOMS.2022.3224562.
  21. L. Yang, F. Meng, Q. Wu, D. B. da Costa, and M.-S. Alouini, “Accurate closed-form approximations to channel distributions of RIS-aided wireless systems,” IEEE Wireless Commun. Lett., vol. 9, no. 11, pp. 1985-1989, Nov. 2020. doi: 10.1109/LWC.2020.3016605.
  22. L. Yang, Y. Yang, D. B. D. Costa, and I. Trigui, “Outage probability and capacity scaling law of multiple RIS-aided networks,” IEEE Wireless Commun. Lett., vol. 10, no. 2, pp. 256-260, Feb. 2021. doi: 10.1109/LWC.2020.3039071.
  23. I. Trigui, W. Ajib, W.-P. Zhu, and M. D. Renzo, “Performance evaluation and diversity analysis of RIS-assisted communications over generalized fading channels in the presence of phase noise,” IEEE Open J. Commun. Soc., vol. 3, pp. 593-607, 2022. doi: 10.1109/OJCOMS.2022.3168584.
  24. E. Björnson, O. Özdogan, and E. G. Larsson, “Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 244-248, Feb. 2020. doi: 10.1109/LWC.2019.2957031.
  25. Z. Ding, R. Schober, and H. V. Poor, “On the Impact of Phase Shifting Designs on IRS-NOMA,” IEEE Wireless Commun. Lett., vol. 9, no. 10, pp. 1596-1600, Oct. 2020. doi: 10.1109/LWC.2020.2991116.
  26. M. Hua, Q. Wu, L. Yang, R. Schober, and H. V. Poor, “A Novel Wireless Communication Paradigm for Intelligent Reflecting Surface Based Symbiotic Radio Systems,” IEEE Trans. Signal Process., vol. 70, pp. 550-565, 2022. doi: 10.1109/TSP.2021.3135603.
  27. G. K. Karagiannidis, T. A. Tsiftsis, and R. K. Mallik, “Bounds of multihop relayed communications in Nakagami-m𝑚mitalic_m fading,” in IEEE Transactions on Communications, vol. 54, no. 1, pp. 18-22, Jan. 2006. doi: 10.1109/TCOMM.2005.860435.
  28. H. Amiriara, F. Ashtiani, M. Mirmohseni, and M. Nasiri-Kenari, “IRS-User Association in IRS-Aided MISO Wireless Networks: Convex Optimization and Machine Learning Approaches,” IEEE Transactions on Vehicular Technology, Early Access, 2023. doi: 10.1109/TVT.2023.3282272.
  29. A. H. A. Bafghi, V. Jamali, M. Nasiri-Kenari, and R. Schober, “Degrees of Freedom of the K-User Interference Channel Assisted by Active and Passive IRSs,” IEEE Transactions on Communications, vol. 70, no. 5, pp. 3063-3080, May 2022. doi: 10.1109/TCOMM.2022.3159658.
  30. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication,” IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 4157-4170, Aug. 2019. doi: 10.1109/TWC.2019.2922609.
  31. Q. Wu and R. Zhang, “Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394-5409, Nov. 2019. doi: 10.1109/TWC.2019.2936025.
  32. M. Jung, W. Saad, Y. Jang, G. Kong, and S. Choi, “Reliability Analysis of Large Intelligent Surfaces (LISs): Rate Distribution and Outage Probability,” IEEE Wireless Communications Letters, vol. 8, no. 6, pp. 1662-1666, Dec. 2019. doi: 10.1109/LWC.2019.2935190.
  33. E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. -S. Alouini, and R. Zhang, “Wireless Communications Through Reconfigurable Intelligent Surfaces,” IEEE Access, vol. 7, pp. 116753-116773, 2019. doi: 10.1109/ACCESS.2019.2935192.
  34. R. C. Ferreira, M. S. P. Facina, F. A. P. de Figueiredo, G. Fraidenraich, and E. R. de Lima, “Bit Error Probability for Large Intelligent Surfaces Under Double-Nakagami Fading Channels,” IEEE Open Journal of Communications Society, vol. 1, pp. 750-759, May 2020. doi: 10.1109/OJCOMS.2020.3004132.
  35. M. S. P. Facina, R. C. Ferreira, F. A. P. de Figueiredo, and G. Fraidenraich, “On the Distribution of the Sum of Double-Nakagami-m𝑚mitalic_m Random Vectors and Application in Randomly Reconfigurable Surfaces,” in 2021 IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1-6. doi: 10.1109/WCNC.2021.9418294.
  36. A. Goldsmith, Wireless Communications by Andrea Goldsmith. Cambridge University Press.
  37. S. Atapattu, R. Fan, P. Dharmawansa, G. Wang, J. Evans, and T. A. Tsiftsis, “Reconfigurable Intelligent Surface Assisted Two-Way Communications: Performance Analysis and Optimization,” IEEE Transactions on Communications, vol. 68, no. 10, pp. 6552-6567, Oct. 2020. doi: 10.1109/TCOMM.2020.3008402.
Citations (2)

Summary

We haven't generated a summary for this paper yet.