Engineering One Axis Twisting via a Dissipative Berry Phase Using Strong Symmetries (2401.06222v2)
Abstract: We show how a driven-dissipative cavity coupled to a collective ensemble of atoms can dynamically generate metrologically useful spin-squeezed states. In contrast to other dissipative approaches, we do not rely on complex engineered dissipation or input states, nor do we require tuning the system to a critical point. Instead, we utilize a strong symmetry, a special type of symmetry that can occur in open quantum systems and emerges naturally in systems with collective dissipation, such as superradiance. This symmetry preserves coherence and allows for the accumulation of an atom number-dependent Berry phase which in turn creates spin-squeezed states via emergent one-axis twisting dynamics. This work shows that it is possible to generate entanglement in an atom-cavity resonant regime with macroscopic optical excitations of the system, going beyond the typical dispersive regime with negligible optical excitations often utilized in current cavity QED experiments.
- M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A 47, 5138 (1993).
- A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
- P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
- B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
- D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Phys. Rev. Lett. 81, 2594 (1998).
- J. P. Paz and W. H. Zurek, Continuous error correction, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 454, 355 (1998).
- J. P. Barnes and W. S. Warren, Automatic quantum error correction, Phys. Rev. Lett. 85, 856 (2000).
- M. Sarovar and G. J. Milburn, Continuous quantum error correction by cooling, Phys. Rev. A 72, 012306 (2005).
- J. Cohen and M. Mirrahimi, Dissipation-induced continuous quantum error correction for superconducting circuits, Phys. Rev. A 90, 062344 (2014).
- E. Kapit, Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits, Phys. Rev. Lett. 116, 150501 (2016).
- S. Puri, S. Boutin, and A. Blais, Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving, npj Quantum Inf. 3, 18 (2017).
- J.-M. Lihm, K. Noh, and U. R. Fischer, Implementation-independent sufficient condition of the Knill-Laflamme type for the autonomous protection of logical qudits by strong engineered dissipation, Phys. Rev. A 98, 012317 (2018).
- S. Lieu, Y.-J. Liu, and A. V. Gorshkov, Candidate for a passively protected quantum memory in two dimensions, arXiv:2205.09767 (2022).
- Y.-J. Liu and S. Lieu, Dissipative phase transitions and passive error correction, arXiv:2307.09512 (2023).
- B. Buča and T. Prosen, A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains, New J. Phys. 14, 073007 (2012).
- R. Ma and C. Wang, Average Symmetry-Protected Topological Phases, Phys. Rev. X 13, 031016 (2023).
- See Supplemental Material for details.
- I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Implementation of Cavity Squeezing of a Collective Atomic Spin, Phys. Rev. Lett. 104, 073602 (2010).
- M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Squeezing the collective spin of a dilute atomic ensemble by cavity feedback, Phys. Rev. A 81, 021804 (2010).
- L. K. Thomsen, S. Mancini, and H. M. Wiseman, Spin squeezing via quantum feedback, Phys. Rev. A 65, 061801(R) (2002).
- T. E. Lee, C.-K. Chan, and S. F. Yelin, Dissipative phase transitions: Independent versus collective decay and spin squeezing, Phys. Rev. A 90, 052109 (2014).
- O. Somech and E. Shahmoon, Quantum entangled states of a classically radiating macroscopic spin, arXiv:2204.05455 (2022).
- D. Barberena and A. M. Rey, Critical steady states of all-to-all driven-dissipative models: An analytic approach, arXiv:2307.05115 (2023).
- V. P. Pavlov, D. Porras, and P. A. Ivanov, Quantum metrology with critical driven-dissipative collective spin system, Phys. Scr. 98, 095103 (2023).
- P. D. Drummond and H. J. Carmichael, Volterra Cycles and the Cooperative Fluorescence Critical Point., Opt Commun 27, 160 (1978).
- R. Puri, S. Lawande, and S. Hassan, Dispersion in the driven dicke model, Opt. Commun. 35, 179 (1980).
- D. F. Walls, Cooperative fluorescence from N coherently driven two-level atoms, J. Phys. B 13, 2001 (1980).
- S. J. Kilin, Cooperative resonance fluorescence and atomic interactions, J. Phys. B 13, 2653 (1980).
- J. Hannukainen and J. Larson, Dissipation-driven quantum phase transitions and symmetry breaking, Phys. Rev. A 98, 042113 (2018).
- V. Link, K. Luoma, and W. T. Strunz, Revealing the nature of nonequilibrium phase transitions with quantum trajectories, Phys. Rev. A 99, 062120 (2019).
- S. Dutta and N. R. Cooper, Long-Range Coherence and Multiple Steady States in a Lossy Qubit Array, Phys. Rev. Lett. 125, 240404 (2020).
- T. Barthel and Y. Zhang, Solving quasi-free and quadratic Lindblad master equations for open fermionic and bosonic systems, J. Stat. Mech. Theory Exp. 2022, 113101 (2022).
- J. Huber, A. M. Rey, and P. Rabl, Realistic simulations of spin squeezing and cooperative coupling effects in large ensembles of interacting two-level systems, Phys. Rev. A 105, 013716 (2022).
- A. Piñeiro Orioli, J. K. Thompson, and A. M. Rey, Emergent Dark States from Superradiant Dynamics in Multilevel Atoms in a Cavity, Phys. Rev. X 12, 11054 (2022).
- J. Fan and S. Jia, Collective dynamics of the unbalanced three-level Dicke model, Phys. Rev. A 107, 033711 (2023).