Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraining dark energy with the integrated Sachs-Wolfe effect (2401.06221v2)

Published 11 Jan 2024 in astro-ph.CO, gr-qc, and hep-th

Abstract: We use the integrated Sachs-Wolfe (ISW) effect, by now detectable at $\sim 5\sigma$ within the context of $\Lambda{}$CDM cosmologies, to place strong constraints on dynamical dark energy theories. Working within an effective field theory framework for dark energy we find that including ISW constraints from galaxy-CMB cross-correlations significantly strengthens existing large-scale structure constraints, yielding bounds consistent with $\Lambda{}$CDM and approximately reducing the viable parameter space by $\sim 70\%$. This is a direct consequence of ${\cal O}(1)$ changes induced in these cross-correlations by otherwise viable dark energy models, which we discuss in detail. We compute constraints by adapting the $\Lambda{}$CDM ISW likelihood from [1] for dynamical dark energy models using galaxy data from 2MASS, WISE $\times$ SuperCOSMOS, SDSS-DR12, QSOs and NVSS, CMB data from Planck 18, and BAO and RSD large scale structure measurements from BOSS and 6dF. We show constraints both in terms of EFT-inspired $\alpha_i$ and phenomenological $\mu/\Sigma$ parametrisations. Furthermore we discuss the approximations involved and related aspects of bias modelling in detail and highlight what these constraints imply for the underlying dark energy theories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (126)
  1. B. Stölzner, A. Cuoco, J. Lesgourgues, and M. Bilicki, “Updated tomographic analysis of the integrated Sachs-Wolfe effect and implications for dark energy,” Phys. Rev. D 97 (2018) no. 6, 063506, arXiv:1710.03238 [astro-ph.CO].
  2. G. Gubitosi, F. Piazza, and F. Vernizzi, “The Effective Field Theory of Dark Energy,” JCAP 1302 (2013) 032, arXiv:1210.0201 [hep-th]. [JCAP1302,032(2013)].
  3. J. K. Bloomfield, E. E. Flanagan, M. Park, and S. Watson, “Dark energy or modified gravity? An effective field theory approach,” JCAP 1308 (2013) 010, arXiv:1211.7054 [astro-ph.CO].
  4. J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Essential Building Blocks of Dark Energy,” JCAP 08 (2013) 025, arXiv:1304.4840 [hep-th].
  5. J. Gleyzes, D. Langlois, and F. Vernizzi, “A unifying description of dark energy,” Int. J. Mod. Phys. D23 (2015) no. 13, 1443010, arXiv:1411.3712 [hep-th].
  6. E. Bellini and I. Sawicki, “Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity,” JCAP 1407 (2014) 050, arXiv:1404.3713 [astro-ph.CO].
  7. M. Lagos, T. Baker, P. G. Ferreira, and J. Noller, “A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories,” JCAP 1608 (2016) no. 08, 007, arXiv:1604.01396 [gr-qc].
  8. M. Lagos, E. Bellini, J. Noller, P. G. Ferreira, and T. Baker, “A general theory of linear cosmological perturbations: stability conditions, the quasistatic limit and dynamics,” JCAP 1803 (2018) no. 03, 021, arXiv:1711.09893 [gr-qc].
  9. T. Kobayashi, M. Yamaguchi, and J. Yokoyama, “Generalized G-inflation: Inflation with the most general second-order field equations,” Prog. Theor. Phys. 126 (2011) 511–529, arXiv:1105.5723 [hep-th].
  10. J. Noller and A. Nicola, “Cosmological parameter constraints for Horndeski scalar-tensor gravity,” Phys. Rev. D 99 (2019) no. 10, 103502, arXiv:1811.12928 [astro-ph.CO].
  11. E. Bellini, A. J. Cuesta, R. Jimenez, and L. Verde, “Constraints on deviations from ΛΛ\Lambdaroman_ΛCDM within Horndeski gravity,” JCAP 02 (2016) 053, arXiv:1509.07816 [astro-ph.CO]. [Erratum: JCAP 06, E01 (2016)].
  12. B. Hu, M. Raveri, N. Frusciante, and A. Silvestri, “Effective Field Theory of Cosmic Acceleration: an implementation in CAMB,” Phys. Rev. D89 (2014) no. 10, 103530, arXiv:1312.5742 [astro-ph.CO].
  13. M. Raveri, B. Hu, N. Frusciante, and A. Silvestri, “Effective Field Theory of Cosmic Acceleration: constraining dark energy with CMB data,” Phys. Rev. D90 (2014) no. 4, 043513, arXiv:1405.1022 [astro-ph.CO].
  14. J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, “Effective Theory of Dark Energy at Redshift Survey Scales,” JCAP 1602 (2016) no. 02, 056, arXiv:1509.02191 [astro-ph.CO].
  15. C. D. Kreisch and E. Komatsu, “Cosmological Constraints on Horndeski Gravity in Light of GW170817,” arXiv:1712.02710 [astro-ph.CO].
  16. M. Zumalacárregui, E. Bellini, I. Sawicki, J. Lesgourgues, and P. G. Ferreira, “hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System,” JCAP 1708 (2017) no. 08, 019, arXiv:1605.06102 [astro-ph.CO].
  17. D. Alonso, E. Bellini, P. G. Ferreira, and M. Zumalacárregui, “Observational future of cosmological scalar-tensor theories,” Phys. Rev. D95 (2017) no. 6, 063502, arXiv:1610.09290 [astro-ph.CO].
  18. S. Arai and A. Nishizawa, “Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory,” Phys. Rev. D97 (2018) no. 10, 104038, arXiv:1711.03776 [gr-qc].
  19. N. Frusciante, S. Peirone, S. Casas, and N. A. Lima, “The road ahead of Horndeski: cosmology of surviving scalar-tensor theories,” arXiv:1810.10521 [astro-ph.CO].
  20. R. Reischke, A. S. Mancini, B. M. Schafer, and P. M. Merkel, “Investigating scalar-tensor-gravity with statistics of the cosmic large-scale structure,” arXiv:1804.02441 [astro-ph.CO].
  21. A. Spurio Mancini, R. Reischke, V. Pettorino, B. M. Schafer, and M. Zumalacárregui, “Testing (modified) gravity with 3D and tomographic cosmic shear,” Mon. Not. Roy. Astron. Soc. 480 (2018) 3725, arXiv:1801.04251 [astro-ph.CO].
  22. G. Brando, F. T. Falciano, E. V. Linder, and H. E. S. Velten, “Modified gravity away from a ΛΛ\Lambdaroman_ΛCDM background,” JCAP 11 (2019) 018, arXiv:1904.12903 [astro-ph.CO].
  23. R. Arjona, W. Cardona, and S. Nesseris, “Designing Horndeski and the effective fluid approach,” Phys. Rev. D 100 (2019) no. 6, 063526, arXiv:1904.06294 [astro-ph.CO].
  24. M. Raveri, “Reconstructing Gravity on Cosmological Scales,” Phys. Rev. D 101 (2020) no. 8, 083524, arXiv:1902.01366 [astro-ph.CO].
  25. L. Perenon, J. Bel, R. Maartens, and A. de la Cruz-Dombriz, “Optimising growth of structure constraints on modified gravity,” JCAP 06 (2019) 020, arXiv:1901.11063 [astro-ph.CO].
  26. N. Frusciante and L. Perenon, “Effective field theory of dark energy: A review,” Phys. Rept. 857 (2020) 1–63, arXiv:1907.03150 [astro-ph.CO].
  27. A. Spurio Mancini, F. Köhlinger, B. Joachimi, V. Pettorino, B. M. Schäfer, R. Reischke, E. van Uitert, S. Brieden, M. Archidiacono, and J. Lesgourgues, “KiDS + GAMA: constraints on horndeski gravity from combined large-scale structure probes,” Mon. Not. Roy. Astron. Soc. 490 (2019) no. 2, 2155–2177, arXiv:1901.03686 [astro-ph.CO].
  28. A. Bonilla, R. D’Agostino, R. C. Nunes, and J. C. N. de Araujo, “Forecasts on the speed of gravitational waves at high z𝑧zitalic_z,” JCAP 03 (2020) 015, arXiv:1910.05631 [gr-qc].
  29. T. Baker and I. Harrison, “Constraining Scalar-Tensor Modified Gravity with Gravitational Waves and Large Scale Structure Surveys,” JCAP 01 (2021) 068, arXiv:2007.13791 [astro-ph.CO].
  30. S. Joudaki, P. G. Ferreira, N. A. Lima, and H. A. Winther, “Testing Gravity on Cosmic Scales: A Case Study of Jordan-Brans-Dicke Theory,” arXiv:2010.15278 [astro-ph.CO].
  31. J. Noller, L. Santoni, E. Trincherini, and L. G. Trombetta, “Scalar-tensor cosmologies without screening,” JCAP 01 (2021) 045, arXiv:2008.08649 [astro-ph.CO].
  32. J. Noller, “Cosmological constraints on dark energy in light of gravitational wave bounds,” Phys. Rev. D 101 (2020) no. 6, 063524, arXiv:2001.05469 [astro-ph.CO].
  33. R. Gsponer and J. Noller, “Tachyonic stability priors for dark energy,” Phys. Rev. D 105 (2022) no. 6, 064002, arXiv:2107.01044 [astro-ph.CO].
  34. R. Kimura, T. Kobayashi, and K. Yamamoto, “Observational Constraints on Kinetic Gravity Braiding from the Integrated Sachs-Wolfe Effect,” Phys. Rev. D 85 (2012) 123503, arXiv:1110.3598 [astro-ph.CO].
  35. J. Renk, M. Zumalacárregui, F. Montanari, and A. Barreira, “Galileon gravity in light of ISW, CMB, BAO and H00{}_{0}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT data,” JCAP 1710 (2017) no. 10, 020, arXiv:1707.02263 [astro-ph.CO].
  36. J. A. Kable, G. Benevento, N. Frusciante, A. De Felice, and S. Tsujikawa, “Probing modified gravity with integrated Sachs-Wolfe CMB and galaxy cross-correlations,” JCAP 09 (2022) 002, arXiv:2111.10432 [astro-ph.CO].
  37. G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10 (1974) 363–384.
  38. C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, “From k-essence to generalised Galileons,” Phys. Rev. D84 (2011) 064039, arXiv:1103.3260 [hep-th].
  39. A. G. et. al., “An ordinary short gamma-ray burst with extraordinary implications: Fermi -gbm detection of grb 170817a,” The Astrophysical Journal Letters 848 (2017) no. 2, L14. http://stacks.iop.org/2041-8205/848/i=2/a=L14.
  40. V. S. et. al., “Integral detection of the first prompt gamma-ray signal coincident with the gravitational-wave event gw170817,” The Astrophysical Journal Letters 848 (2017) no. 2, L15. http://stacks.iop.org/2041-8205/848/i=2/a=L15.
  41. B. P. A. et. al., “Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a,” The Astrophysical Journal Letters 848 (2017) no. 2, L13. http://stacks.iop.org/2041-8205/848/i=2/a=L13.
  42. B. P. A. et. al., “Multi-messenger observations of a binary neutron star merger,” The Astrophysical Journal Letters 848 (2017) no. 2, L12. http://stacks.iop.org/2041-8205/848/i=2/a=L12.
  43. J. Beltran Jimenez, F. Piazza, and H. Velten, “Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars,” Phys. Rev. Lett. 116 (2016) no. 6, 061101, arXiv:1507.05047 [gr-qc].
  44. P. Creminelli and F. Vernizzi, “Dark Energy after GW170817 and GRB170817A,” Phys. Rev. Lett. 119 (2017) no. 25, 251302, arXiv:1710.05877 [astro-ph.CO].
  45. J. Sakstein and B. Jain, “Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories,” Phys. Rev. Lett. 119 (2017) no. 25, 251303, arXiv:1710.05893 [astro-ph.CO].
  46. J. M. Ezquiaga and M. Zumalacárregui, “Dark Energy After GW170817: Dead Ends and the Road Ahead,” Phys. Rev. Lett. 119 (2017) no. 25, 251304, arXiv:1710.05901 [astro-ph.CO].
  47. T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki, “Strong constraints on cosmological gravity from GW170817 and GRB 170817A,” Phys. Rev. Lett. 119 (2017) no. 25, 251301, arXiv:1710.06394 [astro-ph.CO].
  48. C. de Rham and S. Melville, “Gravitational Rainbows: LIGO and Dark Energy at its Cutoff,” Phys. Rev. Lett. 121 (2018) no. 22, 221101, arXiv:1806.09417 [hep-th].
  49. T. Baker, E. Barausse, A. Chen, C. de Rham, M. Pieroni, and G. Tasinato, “Testing gravitational wave propagation with multiband detections,” JCAP 03 (2023) 044, arXiv:2209.14398 [gr-qc].
  50. I. Harry and J. Noller, “Probing the speed of gravity with LVK, LISA, and joint observations,” Gen. Rel. Grav. 54 (2022) no. 10, 133, arXiv:2207.10096 [gr-qc].
  51. E. V. Linder, G. Sengör, and S. Watson, “Is the Effective Field Theory of Dark Energy Effective?,” JCAP 1605 (2016) no. 05, 053, arXiv:1512.06180 [astro-ph.CO].
  52. E. V. Linder, “Challenges in connecting modified gravity theory and observations,” Phys. Rev. D95 (2017) no. 2, 023518, arXiv:1607.03113 [astro-ph.CO].
  53. M. Denissenya and E. V. Linder, “Gravity’s Islands: Parametrizing Horndeski Stability,” JCAP 1811 (2018) no. 11, 010, arXiv:1808.00013 [astro-ph.CO].
  54. L. Lombriser, C. Dalang, J. Kennedy, and A. Taylor, “Inherently stable effective field theory for dark energy and modified gravity,” JCAP 1901 (2019) no. 01, 041, arXiv:1810.05225 [astro-ph.CO].
  55. J. Gleyzes, “Parametrizing modified gravity for cosmological surveys,” Phys. Rev. D96 (2017) no. 6, 063516, arXiv:1705.04714 [astro-ph.CO].
  56. D. Traykova, E. Bellini, P. G. Ferreira, C. García-García, J. Noller, and M. Zumalacárregui, “Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models,” arXiv:2103.11195 [astro-ph.CO].
  57. I. Sawicki and E. Bellini, “Limits of quasistatic approximation in modified-gravity cosmologies,” Phys. Rev. D92 (2015) no. 8, 084061, arXiv:1503.06831 [astro-ph.CO].
  58. A. de la Cruz-Dombriz, A. Dobado, and A. L. Maroto, “On the evolution of density perturbations in f(R) theories of gravity,” Phys. Rev. D 77 (2008) 123515, arXiv:0802.2999 [astro-ph].
  59. J. Noller, F. von Braun-Bates, and P. G. Ferreira, “Relativistic scalar fields and the quasistatic approximation in theories of modified gravity,” Phys. Rev. D 89 (2014) no. 2, 023521, arXiv:1310.3266 [astro-ph.CO].
  60. D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes,” JCAP 1107 (2011) 034, arXiv:1104.2933 [astro-ph.CO].
  61. R. Beck, L. Dobos, T. Budavari, A. S. Szalay, and I. Csabai, “Photometric redshifts for the sdss data release 12,” Monthly Notices of the Royal Astronomical Society 460 (2016) no. 2, 1371–1381. https://doi.org/10.1093%2Fmnras%2Fstw1009.
  62. K. M. Huffenberger, U. Seljak, and A. Makarov, “Sunyaev-Zeldovich effect in WMAP and its effect on cosmological parameters,” Phys. Rev. D 70 (2004) 063002, arXiv:astro-ph/0404545.
  63. N. Afshordi, Y.-S. Loh, and M. A. Strauss, “Cross - correlation of the Cosmic Microwave Background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources,” Phys. Rev. D 69 (2004) 083524, arXiv:astro-ph/0308260.
  64. S. Boughn and R. Crittenden, “A Correlation of the cosmic microwave sky with large scale structure,” Nature 427 (2004) 45–47, arXiv:astro-ph/0305001.
  65. P. Fosalba, E. Gaztanaga, and F. Castander, “Detection of the ISW and SZ effects from the CMB-galaxy correlation,” Astrophys. J. Lett. 597 (2003) L89–92, arXiv:astro-ph/0307249.
  66. P. Vielva, E. Martinez-Gonzalez, and M. Tucci, “WMAP and NVSS cross-correlation in wavelet space: ISW detection and dark energy constraints,” Mon. Not. Roy. Astron. Soc. 365 (2006) 891, arXiv:astro-ph/0408252.
  67. A. Cabre, P. Fosalba, E. Gaztanaga, and M. Manera, “Error analysis in cross-correlation of sky maps: Application to the ISW detection,” Mon. Not. Roy. Astron. Soc. 381 (2007) 1347, arXiv:astro-ph/0701393.
  68. A. Cabre, E. Gaztanaga, M. Manera, P. Fosalba, and F. Castander, “Cross-correlation of wmap 3rd year and the sdss dr4 galaxy survey: new evidence for dark energy,” Mon. Not. Roy. Astron. Soc. 372 (2006) L23–L27, arXiv:astro-ph/0603690.
  69. T. Giannantonio, R. G. Crittenden, R. C. Nichol, R. Scranton, G. T. Richards, A. D. Myers, R. J. Brunner, A. G. Gray, A. J. Connolly, and D. P. Schneider, “A high redshift detection of the integrated Sachs-Wolfe effect,” Phys. Rev. D 74 (2006) 063520, arXiv:astro-ph/0607572.
  70. D. Pietrobon, A. Balbi, and D. Marinucci, “Integrated Sachs-Wolfe effect from the cross-correlation of WMAP 3 year and NVSS: new results and constraints on dark energy,” Phys. Rev. D 74 (2006) 043524, arXiv:astro-ph/0606475.
  71. J. D. McEwen, P. Vielva, M. P. Hobson, E. Martinez-Gonzalez, and A. N. Lasenby, “Detection of the integrated Sachs–Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets,” Mon. Not. Roy. Astron. Soc. 376 (2007) 1211–1226, arXiv:astro-ph/0602398.
  72. A. Raccanelli, A. Bonaldi, M. Negrello, S. Matarrese, G. Tormen, and G. De Zotti, “A reassessment of the evidence of the Integrated Sachs-Wolfe effect through the WMAP-NVSS correlation,” Mon. Not. Roy. Astron. Soc. 386 (2008) 2161–2166, arXiv:0802.0084 [astro-ph].
  73. A. Rassat, K. Land, O. Lahav, and F. B. Abdalla, “Cross-correlation of 2MASS and WMAP3: Implications for the Integrated Sachs-Wolfe effect,” Mon. Not. Roy. Astron. Soc. 377 (2007) 1085–1094, arXiv:astro-ph/0610911.
  74. S. Ho, C. Hirata, N. Padmanabhan, U. Seljak, and N. Bahcall, “Correlation of CMB with large-scale structure: I. ISW Tomography and Cosmological Implications,” Phys. Rev. D 78 (2008) 043519, arXiv:0801.0642 [astro-ph].
  75. J.-Q. Xia, M. Viel, C. Baccigalupi, and S. Matarrese, “The High Redshift Integrated Sachs-Wolfe Effect,” JCAP 09 (2009) 003, arXiv:0907.4753 [astro-ph.CO].
  76. F. X. Dupe, A. Rassat, J. L. Starck, and M. J. Fadili, “Measuring the Integrated Sachs-Wolfe Effect,” Astron. Astrophys. 534 (2011) A51, arXiv:1010.2192 [astro-ph.CO].
  77. S. Ferraro, B. D. Sherwin, and D. N. Spergel, “WISE measurement of the integrated Sachs-Wolfe effect,” Phys. Rev. D 91 (2015) no. 8, 083533, arXiv:1401.1193 [astro-ph.CO].
  78. A. J. Shajib and E. L. Wright, “Measurement of the integrated Sachs-Wolfe effect using the AllWISE data release,” Astrophys. J. 827 (2016) no. 2, 116, arXiv:1604.03939 [astro-ph.CO].
  79. T. Giannantonio, R. Scranton, R. G. Crittenden, R. C. Nichol, S. P. Boughn, A. D. Myers, and G. T. Richards, “Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications,” Phys. Rev. D 77 (2008) 123520, arXiv:0801.4380 [astro-ph].
  80. T. Giannantonio, R. Crittenden, R. Nichol, and A. J. Ross, “The significance of the integrated Sachs-Wolfe effect revisited,” Mon. Not. Roy. Astron. Soc. 426 (2012) 2581–2599, arXiv:1209.2125 [astro-ph.CO].
  81. H. S. Xavier, M. V. Costa-Duarte, A. Balaguera-Antolínez, and M. Bilicki, “All-sky angular power spectra from cleaned WISE×SuperCOSMOS galaxy number counts,” JCAP 08 (2019) 037, arXiv:1812.08182 [astro-ph.CO].
  82. F. Calore, A. Cuoco, T. Regimbau, S. Sachdev, and P. D. Serpico, “Cross-correlating galaxy catalogs and gravitational waves: a tomographic approach,” Phys. Rev. Res. 2 (2020) 023314, arXiv:2002.02466 [astro-ph.CO].
  83. A. Krolewski and S. Ferraro, “The Integrated Sachs Wolfe effect: unWISE and Planck constraints on dynamical dark energy,” JCAP 04 (2022) no. 04, 033, arXiv:2110.13959 [astro-ph.CO].
  84. A. Kovács, R. Beck, A. Smith, G. Rácz, I. Csabai, and I. Szapudi, “Evidence for a high-z ISW signal from supervoids in the distribution of eBOSS quasars,” Mon. Not. Roy. Astron. Soc. 513 (2022) no. 1, 15–26, arXiv:2107.13038 [astro-ph.CO].
  85. Q. Hang, S. Alam, Y.-C. Cai, and J. A. Peacock, “Stacked CMB lensing and ISW signals around superstructures in the DESI Legacy Survey,” Mon. Not. Roy. Astron. Soc. 507 (2021) no. 1, 510–523, arXiv:2105.11936 [astro-ph.CO].
  86. D. N. Limber, “The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II,” Astrophys. J. 119 (1954) 655.
  87. N. Kaiser, “Weak gravitational lensing of distant galaxies,” Astrophys. J. 388 (1992) 272.
  88. N. Kaiser, “Weak lensing and cosmology,” Astrophys. J. 498 (1998) 26, arXiv:astro-ph/9610120.
  89. M. LoVerde and N. Afshordi, “Extended Limber Approximation,” Phys. Rev. D 78 (2008) 123506, arXiv:0809.5112 [astro-ph].
  90. M. Bilicki, T. H. Jarrett, J. A. Peacock, M. E. Cluver, and L. Steward, “2MASS Photometric Redshift catalog: a comprehensive three-dimensional census of the whole sky,” Astrophys. J. Suppl. 210 (2014) 9, arXiv:1311.5246 [astro-ph.CO].
  91. G. T. Richards, A. D. Myers, A. G. Gray, R. N. Riegel, R. C. Nichol, R. J. Brunner, A. S. Szalay, D. P. Schneider, and S. F. Anderson, “Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey: II. ~1,000,000 Quasars from Data Release Six,” Astrophys. J. Suppl. 180 (2009) 67–83, arXiv:0809.3952 [astro-ph].
  92. J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, G. B. Taylor, and J. J. Broderick, “The NRAO VLA Sky survey,” Astron. J. 115 (1998) 1693–1716.
  93. A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, “The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z=0.15𝑧0.15z=0.15italic_z = 0.15,” Mon. Not. Roy. Astron. Soc. 449 (2015) no. 1, 835–847, arXiv:1409.3242 [astro-ph.CO].
  94. F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, G. B. Poole, L. Campbell, Q. Parker, W. Saunders, and F. Watson, “The 6dF Galaxy Survey: z≈0𝑧0z\approx 0italic_z ≈ 0 measurement of the growth rate and σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT,” Mon. Not. Roy. Astron. Soc. 423 (2012) 3430–3444, arXiv:1204.4725 [astro-ph.CO].
  95. J. Noller and A. Nicola, “Radiative stability and observational constraints on dark energy and modified gravity,” Phys. Rev. D 102 (2020) no. 10, 104045, arXiv:1811.03082 [astro-ph.CO].
  96. S. Arai, P. Karmakar, and A. Nishizawa, “Cosmological evolution of viable models in the generalized scalar-tensor theory,” Phys. Rev. D 102 (2020) no. 2, 024003, arXiv:1912.01768 [gr-qc].
  97. B. R. Scott, K. S. Karkare, and S. Bird, “A forecast for large-scale structure constraints on Horndeski gravity with CO line intensity mapping,” Mon. Not. Roy. Astron. Soc. 523 (2023) no. 4, 4895–4908, arXiv:2209.13029 [astro-ph.CO].
  98. U. Andrade, A. a. J. S. Capistrano, E. Di Valentino, and R. C. Nunes, “Exploring Modified Gravity: Constraints on the μ𝜇\muitalic_μ and ΣΣ\Sigmaroman_Σ Parametrization with WMAP, ACT, and SPT,” arXiv:2309.15781 [astro-ph.CO].
  99. Y. Wen, N.-M. Nguyen, and D. Huterer, “Sweeping Horndeski canvas: new growth-rate parameterization for modified-gravity theories,” JCAP 09 (2023) 028, arXiv:2304.07281 [astro-ph.CO].
  100. S. Castello, M. Mancarella, N. Grimm, D. S. Blanco, I. Tutusaus, and C. Bonvin, “Gravitational Redshift Constraints on the Effective Theory of Interacting Dark Energy,” arXiv:2311.14425 [astro-ph.CO].
  101. N. S. Sugiyama, D. Yamauchi, T. Kobayashi, T. Fujita, S. Arai, S. Hirano, S. Saito, F. Beutler, and H.-J. Seo, “New constraints on cosmological modified gravity theories from anisotropic three-point correlation functions of BOSS DR12 galaxies,” arXiv:2302.06808 [astro-ph.CO].
  102. A. Barreira, A. G. Sánchez, and F. Schmidt, “Validating estimates of the growth rate of structure with modified gravity simulations,” Phys. Rev. D 94 (2016) no. 8, 084022, arXiv:1605.03965 [astro-ph.CO].
  103. A. Taruya, K. Koyama, T. Hiramatsu, and A. Oka, “Beyond consistency test of gravity with redshift-space distortions at quasilinear scales,” Phys. Rev. D 89 (2014) no. 4, 043509, arXiv:1309.6783 [astro-ph.CO].
  104. N. Cruickshank and J. Noller, “Probing dark energy with redshift space distortions,” to appear .
  105. P. Creminelli, G. Tambalo, F. Vernizzi, and V. Yingcharoenrat, “Dark-Energy Instabilities induced by Gravitational Waves,” arXiv:1910.14035 [gr-qc].
  106. E. Babichev, C. Deffayet, and G. Esposito-Farese, “Constraints on Shift-Symmetric Scalar-Tensor Theories with a Vainshtein Mechanism from Bounds on the Time Variation of G,” Phys. Rev. Lett. 107 (2011) 251102, arXiv:1107.1569 [gr-qc].
  107. C. Burrage and J. Dombrowski, “Constraining the cosmological evolution of scalar-tensor theories with local measurements of the time variation of G,” JCAP 07 (2020) 060, arXiv:2004.14260 [astro-ph.CO].
  108. S. Melville and J. Noller, “Positivity in the Sky: Constraining dark energy and modified gravity from the UV,” Phys. Rev. D 101 (2020) no. 2, 021502, arXiv:1904.05874 [astro-ph.CO].
  109. J. Kennedy and L. Lombriser, “Positivity bounds on reconstructed Horndeski models,” Phys. Rev. D 102 (2020) no. 4, 044062, arXiv:2003.05318 [gr-qc].
  110. C. de Rham, S. Melville, and J. Noller, “Positivity bounds on dark energy: when matter matters,” JCAP 08 (2021) 018, arXiv:2103.06855 [astro-ph.CO].
  111. S. Melville and J. Noller, “Positivity bounds from multiple vacua and their cosmological consequences,” JCAP 06 (2022) no. 06, 031, arXiv:2202.01222 [hep-th].
  112. G. Cusin, M. Lewandowski, and F. Vernizzi, “Nonlinear Effective Theory of Dark Energy,” JCAP 04 (2018) 061, arXiv:1712.02782 [astro-ph.CO].
  113. G. Cusin, M. Lewandowski, and F. Vernizzi, “Dark Energy and Modified Gravity in the Effective Field Theory of Large-Scale Structure,” JCAP 04 (2018) 005, arXiv:1712.02783 [astro-ph.CO].
  114. D. B. Thomas, “Cosmological gravity on all scales: simple equations, required conditions, and a framework for modified gravity,” Phys. Rev. D 101 (2020) no. 12, 123517, arXiv:2004.13051 [gr-qc].
  115. S. Srinivasan, D. B. Thomas, F. Pace, and R. Battye, “Cosmological gravity on all scales. Part II. Model independent modified gravity N-body simulations,” JCAP 06 (2021) 016, arXiv:2103.05051 [astro-ph.CO].
  116. B. Fiorini, K. Koyama, and A. Izard, “Studying large-scale structure probes of modified gravity with COLA,” JCAP 12 (2022) 028, arXiv:2208.01345 [astro-ph.CO].
  117. G. Brando, B. Fiorini, K. Koyama, and H. A. Winther, “Enabling matter power spectrum emulation in beyond-ΛΛ\Lambdaroman_ΛCDM cosmologies with COLA,” JCAP 09 (2022) 051, arXiv:2203.11120 [astro-ph.CO].
  118. B. S. Wright, A. Sen Gupta, T. Baker, G. Valogiannis, and B. Fiorini, “Hi-COLA: fast, approximate simulations of structure formation in Horndeski gravity,” JCAP 03 (2023) 040, arXiv:2209.01666 [astro-ph.CO].
  119. B. Bose, M. Tsedrik, J. Kennedy, L. Lombriser, A. Pourtsidou, and A. Taylor, “Fast and accurate predictions of the nonlinear matter power spectrum for general models of Dark Energy and Modified Gravity,” arXiv:2210.01094 [astro-ph.CO].
  120. L. Heisenberg, J. Noller, and J. Zosso, “Horndeski under the quantum loupe,” JCAP 10 (2020) 010, arXiv:2004.11655 [hep-th].
  121. D. Foreman-Mackey, “corner.py: Scatterplot matrices in python,” The Journal of Open Source Software 24 (2016) . http://dx.doi.org/10.5281/zenodo.45906.
  122. E. Bellini, I. Sawicki, and M. Zumalacárregui, “hi_class: Background Evolution, Initial Conditions and Approximation Schemes,” JCAP 02 (2020) 008, arXiv:1909.01828 [astro-ph.CO].
  123. B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, “Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code,” JCAP 1302 (2013) 001, arXiv:1210.7183 [astro-ph.CO].
  124. T. Brinckmann and J. Lesgourgues, “MontePython 3: boosted MCMC sampler and other features,” arXiv:1804.07261 [astro-ph.CO].
  125. J. M. Martín-García, “xAct 2002-2014,” http://www.xact.es/ .
  126. A. Ijjas, “Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions,” JCAP 02 (2018) 007, arXiv:1710.05990 [gr-qc].
Citations (4)

Summary

We haven't generated a summary for this paper yet.